期刊文献+

Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential

Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential
下载PDF
导出
摘要 We present the results for the transition temperature of quantum chromodynamics with two degenerate flavors (Nf=2) of Wilson quarks as a function of a small baryon chemical potential μB from Monte Carlo simulations at κ=0.175, κ is the hopping parameter. By using the imaginary chemical potential for which the fermion determinant is positive and the Ferrenberg-Swendsen reweighting method, we perform simulations on lattice 83×4 with 4 being the temporal extent. By analytic continuation of the data to the real chemical potential μ, we obtain the transition temperature for the small chemical potential, and compare our results with others. We present the results for the transition temperature of quantum chromodynamics with two degenerate flavors (Nf=2) of Wilson quarks as a function of a small baryon chemical potential μB from Monte Carlo simulations at κ=0.175, κ is the hopping parameter. By using the imaginary chemical potential for which the fermion determinant is positive and the Ferrenberg-Swendsen reweighting method, we perform simulations on lattice 83×4 with 4 being the temporal extent. By analytic continuation of the data to the real chemical potential μ, we obtain the transition temperature for the small chemical potential, and compare our results with others.
作者 吴良凯
机构地区 Faculty of Science
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第2期50-53,共4页 中国物理快报(英文版)
基金 Supported in part by the National Natural Science Foundation of China under Grant No 10847137, the Science Foundation of Jiangsu University (1283000345), and the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-YW-W10.
  • 相关文献

参考文献27

  • 1Schmidt C 2006 Proc. Sci. LAT2006 021.
  • 2Rajagopal K 1999 Nucl. Phys. A 661 150.
  • 3Chang S, Liu J f and Zhuang P F 2008 Chin. Phys. Lett. 25 55.
  • 4de Forcrand P and Philipsen O 2002 Nucl. Phys. B 642 290.
  • 5D'Elia M and Lombardo M P 2003 Phys. Rev. D 67 014505.
  • 6Wu L K, Luo X Q and ChenH S 2007 Phys. Rev. D 76 034505.
  • 7Wu L K, Fang Y Z, Liu Y B, Liu Y and Luo Z H 2009 J. Phys. G 36 055005.
  • 8Bernard C et al 2008 Phys. Rev. D 77 014503.
  • 9Aoki Y, Fodor Z, Katz S D and Szabo K k 2006 J. High Energy Phys. 01 089.
  • 10Bernard C et al 2005 Phys. Rev. D 71 034504.
  • 1K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2014,38(9):122-138.
  • 2S. Bethke,G. Dissertori,G.P. Salam.QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2016,40(10):132-150.
  • 3S. Hashimoto,J. Laiho,S.R. Sharpe.LATTICE QUANTUM CHROMODYNAMICS[J].Chinese Physics C,2016,40(10):310-320.
  • 4刘莉,茆诗松.关于口味比较的检验[J].应用概率统计,2006,22(1):21-26. 被引量:2
  • 5Francesco Bigazzi,Aldo Cotrone,Javier Mas,Daniel Mayerson,Javier Tarrio.Holographic Duals of Quark Gluon Plasmas with Unquenched Flavors[J].Communications in Theoretical Physics,2012,57(3):364-386.
  • 6王帅伟,杨兴强,李根全,黄金书.B_(s,d)→μ^+μ_- decays in a flavor changing Z′ model[J].Chinese Physics C,2010,34(5):539-542.
  • 7谭新民.免费品尝的时间不同 促销效果也不同[J].农村百事通,2010(2):25-25.
  • 8黄明阳.Study of accelerator neutrino detection at a spallation source[J].Chinese Physics C,2016,40(6):9-14. 被引量:1
  • 9高婷婷.口味比较与厂家盈利问题[J].阜阳师范学院学报(自然科学版),2006,23(3):21-23.
  • 10贺伟伟.热黑洞与时间之箭[J].飞碟探索,2016,0(8):30-31.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部