期刊文献+

一类离散时间广义非线性控制系统的动态不可测扰动解耦 被引量:4

Dynamic Unmeasurable Disturbance Decoupling for A Class of Generalized Discrete Time Nonlinear Systems
原文传递
导出
摘要 提供了离散时间广义非线性控制系统的不可测扰动的一种‘反演算法’。通过运用一类正则动态补偿器解决系统的解耦问题。最后证明了:系统可用动态状态反馈解耦,也可通过拟静态状态反馈进行解耦。 The paper presents a linear algebraic solution of the dynamic disturbance decoupling problem for a generalized discrete time nonlinear system. The solution is to be searched in the class of regular dynamic compensators. Moreover, we prove that if the disturbance decoupling problem is solvable by a dynamic state feedback, then it is solvable by a quasi static feedback.
出处 《系统工程理论与实践》 EI CSCD 北大核心 1998年第12期8-13,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金 辽宁青年自然科学基金
关键词 非线性控制系统 扰动解耦 线性叠代方法 discrete time nonlinear systems disturbance decoupling linear algebraic methods quasi static state feedback.
  • 相关文献

同被引文献25

  • 1鲁守银,周玉成,刘晓平.具有最小相位的非线性时变不确定系统的鲁棒镇定[J].信息与控制,1996,25(5):278-281. 被引量:3
  • 2[2]Grizzle J W. A linear algebraic framework for the analysis of dicrete-time nonlinear systems[J]. SIAM J Contr and Optimiza,1993.1026-1044.
  • 3[3]Responek W. Disturbance decoupling via dynamic feedback[A]. Controlled Dynamical Systems[C].Boston: Brikhauser,1991.347-357.
  • 4[4]Huijberts H J C. A nonregular solution of the nonlinear disturbance decoupling problem with an application to a complete solution of the nonlinear model matching problem[J]. SIAM J Contr and Optimiz,1992,30(8):350-366.
  • 5[5]Pereira da Silva P S, Pinto Leite V M. Disturbance decoupling by regular for affine nonlinear systems: A linear algebraic approach[A]. 12th IFAC World Congress[C].Sydney,1993.387-390.
  • 6[6]Moog C H, Perdon A M, Conte G. Model matching and factorization for nonlinear systems: A structural approach[J]. SIAM J Control and Optimez,1991,29(7):769-785.
  • 7[7]Fliegner T, Nijmeiher H. Dynamic disturbance decoupling for nonlinear discrete-time systems[A]. Proc 33rd IEEE Conf on Decision and Control[C].Buena Vista,1994.2:1790-1791.
  • 8[9]Kotta U. Dynamic disturbance decoupling for discrete-time nonlinear systems: The nonsquare and noninvertible case[J].Phys Math,1992,41(7):14-22.
  • 9Corless M R, Leitmann G. Continuous State Feedback Guaranteeing Uniform Ultimate Bounded Ness for Uncertain Dynamic Systems[J]. IEEE AC-26, 1981:1139-1144.
  • 10Kane.llakopoulos I, Kokotovic P V, Marino R. An Extend Scheme for Robust Adaptive Nonlinear Control[J]. Automatica, 1991,(27)2: 247-255.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部