期刊文献+

考虑输出饱和约束的自适应FIR滤波器设计

Adaptive FIR Filter Design with Saturation Constraint on Output
下载PDF
导出
摘要 针对Bershad算法中滤波器输出信号畸变的问题,提出了一种新的考虑输出饱和约束的自适应有限脉冲响应(Finite-impulse-response,FIR)滤波器设计方法,并给出了它的最小均方(Least mean square,LMS)算法实现。理论证明和数值仿真验证了本文算法的有效性。与Bershad算法相比,按照本文算法设计的自适应FIR滤波器不仅严格满足饱和约束条件,输出信号也光滑无畸变,从而克服了Bershad算法的滤波器输出畸变问题。 To avoid output distortion problem of Bershad algorithm, a new adaptive finite-im- pulse-response (FIR) filter with the output saturation constraint is designed. The filter is real- ized by least mean square (LMS) algorithm. Both the theoretical derivation and the numerical simulation demonstrate the effectiveness of the algorithm. Compared with the Bershad algorithm, the adaptive FIR filter designed by new algorithm can meet the saturation constraint, and has a smooth output signal without the distortion. Therefore, it improves the efficiency of the Bershad algorithm.
出处 《数据采集与处理》 CSCD 北大核心 2010年第1期66-70,共5页 Journal of Data Acquisition and Processing
基金 国家高技术研究发展计划("八六三"计划)重点项目(2008AA121803)资助项目
关键词 自适应FIR滤波器 输出饱和约束 LMS算法 adaptive FIR filter saturation constraint on output LMS algorithm
  • 相关文献

参考文献10

  • 1Widrow B, Stearn S D. Adaptive signal processing [M]. NJ : Prentice-Hall, 1985 : 185-240.
  • 2汪萌,戴礼荣,宋彦,王仁华.一种使用双滤波器的回声消除算法[J].数据采集与处理,2006,21(1):74-79. 被引量:13
  • 3Bershad N J,Celka P,Vesin J M. Stochastic analysis of gradient adaptive identification of nonlinear systems with memory for Gaussian data and noisy input and output measurements[J]. IEEE Transactions on Signal Processing, 1999,47 (3) : 675-689.
  • 4仪垂杰.噪声和振动的主动控制[M].北京:科学出版社,2002.
  • 5Rafaely B,Elliott S J. A computationally efficient frequency-domain LMS algorithm with constraints on the adaptive filter[J]. IEEE Transactions on Signal Processing, 2000,48(6) : 1649-1655.
  • 6尹建民,周雅莉,张奇志,关碧华.考虑约束的频域算法在有源噪声控制中的应用[J].噪声与振动控制,2004,24(3):18-21. 被引量:5
  • 7Costa M H,Bershad N J. Stochastic analysis of the LMS algorithm with a saturation nonlinearity following the adaptive filter output[J]. IEEE Transactions on Signal Processing, 2001,49 (7) : 1370-1387.
  • 8Costa M H,Bershad N J. Stochastic analysis of the Filtered-x LMS algorithm in system with nonlinear secondary paths [J]. IEEE Transactions on Signal Processing, 2002,50(6) : 1327-1342.
  • 9DeBrunner V E,Zhou Dayong. Active nonlinear noise control with certain non-linearities in the secondary path[J]. IEEE T-SP, 2003,2053-2057.
  • 10Douglas S C, Pan W. Exact expectation analysis of the LMS adaptive filter[]]. IEEE Transactions on Signal Processing, 1995,43 (12) : 2863-2871.

二级参考文献21

  • 1SEN M.KUO AND DENNIS R.MORGAN,Active Noise Control:A Tutorial Review,Proceedings of the IEEE,vol.87,No.6,pp943-973,June 1999.
  • 2S.J.Elliot,Signal Processing for Active Control[J].Academic Press,2001.
  • 3S.J.Elliot and P.A.Nelson,Active Noise Control[J].IEEE Signal Processing Magazine,1993,10(10):12-35.
  • 4John J.Shynk,Frequency Domain and Multirate Adaptive Filtering[J].IEEE Signal Processing Mag.,1992,9(1):14-37.
  • 5Boaz Rafaely and Stephen J.Elliot,A Computationally Efficient Frequency-Domain LMS Algorithm with Constraint on the Adaptive Filter[J].IEEE Trans.on Signal Processing,2000,48(6):1649-1655.
  • 6HSIEH S.HOU,A Fast Recursive Algorithm For Computing the Discrete Cosine Transform[J].IEEE Trans.Acoust.,Speech,Signal Processing,1987,35(10):1455-1461.
  • 7刘树棠 [美]B.Windrow 韩崇昭.自适应逆控制[M].西安:西安交通大学出版社,1999..
  • 8Jar-Ferr Yang and Chih-Peng Fan,Recursive Discrete Cosine Transforms with Selectable Fixed-Coefficient Filters[J].IEEE Trans.Circuits Syste.-Ⅱ:Analog and Digital Signal Processing,1999,46(2):211-216.
  • 9Cho Jun H,Dennis R M,Benesty J.An objective technique for evaluating doubletalk detectors in acoustic echo canceler[J].IEEE Trans on Speech and Audio Processing,1990,4(6):718-724.
  • 10Benesty J,Dennis R M,Jun H C.A new class of doubletalk detectors based on cross-correlation[J].IEEE Trans on Speech and Audio Processing,2000,8(2):168-172.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部