摘要
本文提出了一种基于空间^1)优化分割算法的自适应多层感知器网络,以求解一些复杂的非线性分类问题。这些问题用一般前馈网络难以得到好的结果。我们提出的网络具有特殊的网络结构。第一隐层单元可以自适应地增加与删减,而每个隐单元都表征一个空间分割超平面。文中引入一种优化算法来提高网络容错能力。本文对5圈“双螺线”的分类样本进行了学习与测试,并与其他方法进行了比较。还给出了手写体识别得到的结果。
In this paper an adaptive multi-layer perceptron network based on space-partitioning algorithm (SP-MLP) is proposed for complex nonlinear classification problem, which normal feed-forward neural networks can not get satisfying results. The proposed network has its special structure. The number of the first hidden layer units which represent the space-partitioning hyperplanes. can be updated adaptively. An optimal algorithm is used to increase the tolerance of the network. We apply our method to the ' two spirals ' classification problem. From the result and comparison, we can see that the SP-MLP network shows better performance than other ones introduced in the references. At last we implement it in the handwriting recognition problem and get good results.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
1998年第4期420-427,共8页
Pattern Recognition and Artificial Intelligence