期刊文献+

质量扩散格子Boltzmann模型及数值模拟 被引量:1

MASS DIFFUSION LATTICE-BOLTZMANN MODEL AND SIMULATIONS
原文传递
导出
摘要 A multispecies, multispeed lattice Boltzmann model is presented to study the mass diffusion properties. At each node the total momentum of all particles and the partial masses of the particles of same species are conserved. Using the Chapman-Enskog method, we have derived from the BGK Boltzmann equation the N-S equation and partial mass conservation equations. We have compared the measured diffusivities with the theoretical values for different single relaxation time, showing good agreemellt. We have carried out the 2-D convection-diffusion simulations on a 16o × 100 hexagonal lattice. At the initial time we inject a bubble of radius r(= l6 nodes), at rest, filled with particles of one species into a uniform flow of particles of the other species. The mean velocity v = 0.5 is along the horizontal axis. One clearly observes the deformation and the diffusion of the bubble. A multispecies, multispeed lattice Boltzmann model is presented to study the mass diffusion properties. At each node the total momentum of all particles and the partial masses of the particles of same species are conserved. Using the Chapman-Enskog method, we have derived from the BGK Boltzmann equation the N-S equation and partial mass conservation equations. We have compared the measured diffusivities with the theoretical values for different single relaxation time, showing good agreemellt. We have carried out the 2-D convection-diffusion simulations on a 16o × 100 hexagonal lattice. At the initial time we inject a bubble of radius r(= l6 nodes), at rest, filled with particles of one species into a uniform flow of particles of the other species. The mean velocity v = 0.5 is along the horizontal axis. One clearly observes the deformation and the diffusion of the bubble.
作者 孙成海
出处 《数值计算与计算机应用》 CSCD 北大核心 1998年第4期252-257,共6页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金!19672O3O 国家教委留学回国人员经费资助
  • 相关文献

参考文献3

  • 1Chen Y,J Stat Phys,1995年,81卷,1/2期,71页
  • 2Qian Y H,Eruophys Lett,1992年,17卷,479页
  • 3Chen H,Phys Rev A,1992年,45卷,8期,5339页

同被引文献13

  • 1HAMEAD M. Lattice Boltzmann equation on a twodimensional rectangular gird[J]. Computation Phys,2001,172(1): 704-717.
  • 2SUCCI S. Lattice Boltzmann equation: failure or success? [J]. PhysicaA, 1997,240(1):221-228.
  • 3NOURGALIEV R R, DINH T N. The lattice Boltzmann equation method: theoretical interpretation, numerics, and implications[J]. Multiphase Flow, 200329(1):117-169.
  • 4WOLFRAM S. Cellular automaton fluids 1: Basic theory[J]. J Stat Phys, 1986, 45(2) :471-526.
  • 5MC NAMARA G, ZANETTI G. Use of Boltzmann equation to simulate Lattice gas automata[J]. Europhys Latt, 1992,165(1) :2323-2334.
  • 6QIAN Y D', HUMIERESD, LALLEMANDP. Lattice BGK model for Navier-Stokes equation[J]. Europhys Latt, 1992, 165(1):288-306.
  • 7CHEN H, CHEN S, MATTHAEUS W H. Lattice Boltzmann model for simulation of Magnethydro dynamics[J]. PhysRevA, 1992, 45(2): 5339-5345.
  • 8BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases, L samll amplitude processes in chaged and neutral one-dimensional systems[J]. Phys Rev, 1934,94(1): 511-525.
  • 9CHEN S, DOOLEN G. Simulation of cavity flow by Lattice Boltzmann method [J]. Computation Phys,1995, 118(2): 329-347.
  • 10刘慕仁,何云,陈若航,孔令江.一维对流扩散方程的格子Boltzmann方法[J].广西科学,1999,6(3):168-169. 被引量:2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部