期刊文献+

干涉型分数傅里叶变换计算全息及其数字再现

Interference type computer-generated hologram of fractional Fourier transform and its digital reconstruction
下载PDF
导出
摘要 根据Lohmann I型分数傅里叶变换(FRFT)光学单元,在FRFT数值算法的基础上获得了物光波在FRFT域的离散复振幅分布,以干涉型计算全息编码方法制作出了分数傅里叶变换计算全息图(CGH),并在计算机中进行了数字再现。仿真实验结果表明:干涉型CGH能记录下物光波的振幅和相位的完整信息,输入平面上的物光波经过任意阶次FRFT后,按照干涉型CGH编码方式产生的全息图能够通过相应阶次的逆FRFT实现再现。 According to the Lohmann I type fractional Fourier transform(FRFT) optical unit and based on the numerical algorithm of FRFT, the discrete complex amplitude of object wave in the FRFT domain is obtained. The computer generated hologram (CGH) of FRFT is made out with the discrete complex amplitude by using the coding method of interference type CGH. The digital reconstruction of the hologram was performed in the computer. The results of simulating experiments show that the interference type CGH can record the whole information of the object wave, and the hologram, which is generated by using the coding method of interference type CGH, records the complex amplitude of the object wave obtained through arbitrary fractional order Fourier transform from the input plane and the object wave can be reconstructed through corresponding converse fractional order Fourier transform.
作者 林睿
出处 《重庆工商大学学报(自然科学版)》 2010年第1期55-59,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 重庆市教委科技项目基金(KJ080720)
关键词 计算全息 分数傅里叶变换 光学全息 离散化 数字再现 computer-generated hologram fractional Fourier transform optical hologram diseretization digital reconstruction.
  • 相关文献

参考文献12

  • 1LOHMANN A W,PARIS D P. Binary Fraunhofer Holograms, Generated by Computer[J]. Applied Optics, 1967,6(10) :1739 -1745.
  • 2MCOWAN P W, HASSACK W J, BURGER E. Three-Dimensional Stereoscopic Display Using Computer Generated Holograms [ J ]. Optics Communications, 1991,82 ( 1 ) : 6 - 11.
  • 3MENDLOVIC D,KIRYUSCHEV I. Two-Channel Computer-Generated Hologram and Its Application for Optical Correlation[ J ]. Optics Communications, 1995,116 (4) : 322 - 325.
  • 4MENDLOVIC D, OZAKTAS H M. Fractional Fourier transforms and their optical implementation-Ⅰ[ J ]. J OPT SOC AMER A, 1993,10(9) :1875 - 1881.
  • 5UNNIKRISHNAN G, JOSEPH J, SINGH K. Optical encryption by double-random phase encoding in the fractional Fourier domain [J]. Optics Letters, 2000,25(12):887-889.
  • 6谭峭峰,魏晓峰,向勇,严瑛白,金国藩.YG算法设计分数傅里叶变换衍射光学光束整形器件[J].光子学报,2005,34(11):1724-1727. 被引量:4
  • 7ALIEVA T, BASTIAANS M J, CALVO M L. Fractional Transforms in Optical Information Processing [ J ]. EURASIP Journal on Applied Signal Processing,2005,2005 (10) : 1498 - 1519.
  • 8ZENG Y, GUO Y, GAO F, et al. Principle and application of multiple fractional Fourier transform holography [ J ]. Optics Communications,2003,215 ( 1 ) :53 - 59.
  • 9GARCTA J, MAS D, DORSCH R G. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm [ J ]. Applied Optics, 1996,35 (35) :7013 - 7018.
  • 10OZAKTAS H M, ARIKAN O, KUTAY M A , et al. Digital Computation of the Fractional Fourier Transform [ J ]. IEEE Transactions on Signal Processing, 1996,44(9) :2141 -2150.

二级参考文献25

  • 1Sang T,Liao J H,Lu Z W,et al. A new Fourier iterative algorithm for the design of phase-only diffractive optical element used in laser beam shaping.Chinese J lasers,1996,B5(5):451~460
  • 2Mendlovic D,Ozaktas H M.Fractional fourier transforms and their optical implementation:I.J Opt Soc Am A,1993,10(9):1875~1881
  • 3Ozaktas H M,Mendlovic D.Fractional fourier transforms and their optical implementation:II.J Opt Soc Am A,1993,10(12):2522~2531
  • 4Pellat-Finet P.Fresnel diffraction and the fractional-order Fourier transform.Opt Lett,1994, 19(18):1388~1390
  • 5Zalevsky Z,Mendlovic D,Dorsch R G.Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain.Opt Lett,1996,21(12):842~844
  • 6Feng D,Yan Y B,Lu S,et al.Designing diffractive phase plates for beam smoothing in the fractional Fourier domain.Journal of Modern Optics,2002,49(7):1125~1133
  • 7Cong W X,Chen N X,Gu B Y.Beam shaping and its solution with the use of an optimization method.Appl Opt,1998,37(20):4500~4503
  • 8Zhang Y,Dong B Z,Gu B Y,et al.Beam shaping in the fractional Fourier transform domain. J Opt Soc Am A,1998,15(5):1114~1120
  • 9霍裕平 杨国桢 顾本源.用光学方法实现幺正变换及一般线性变换(Ⅱ)—用迭代法求解[J].物理学报,1976,25(1):31-46.
  • 10Yang G Z,Wang L,Dong B Z,et al.On the amplitude-phase retrieval problem in an optical system involving non-unitary transformation.Optik,1987,75(2):68~74

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部