摘要
设{X_(ni):1≤i≤n,n≥1}为行间ND阵列,g(x)是R^+上指数为α的正则变化函数,{α_(ni):1≤i≤n,n≥1}为满足条件的实数阵列.本文采用截尾的方法,得到了使ND随机变量阵列加权乘积和完全收敛的条件,并推广了以前学者的结论.
Let {Xni:1≤i≤n,n≥1} be an array of rowwise ND random variables, and let g(x) be a regular function with index α. Let {αni:1≤i≤n,n≥1} be an array of real numbers satisfying max 1≤i≤n|ani|=0((g(n))^-1). In this paper, it is taken advantage of truncation, a set of sufficient conditions such that complete convergence for weighted sums of arrays of ND random variables are obtained. The well-known results by before scholars are extended.
出处
《纯粹数学与应用数学》
CSCD
2010年第1期84-90,106,共8页
Pure and Applied Mathematics
基金
国家自然科学基金(10661006)
广西"新世纪十百千人才工程"专项资金(2005214)
广西自然科学基金(桂科自0728212)
关键词
行间ND阵列
加权乘积和
完全收敛性
正则变化函数
慢变函数
array of rowwise ND random variables, weighted product sum, complete convergence, regular varying function, slowing varying function