期刊文献+

ND阵列加权乘积和的完全收敛性 被引量:7

Complete convergence for weighted sums of arrays of ND random variables
下载PDF
导出
摘要 设{X_(ni):1≤i≤n,n≥1}为行间ND阵列,g(x)是R^+上指数为α的正则变化函数,{α_(ni):1≤i≤n,n≥1}为满足条件的实数阵列.本文采用截尾的方法,得到了使ND随机变量阵列加权乘积和完全收敛的条件,并推广了以前学者的结论. Let {Xni:1≤i≤n,n≥1} be an array of rowwise ND random variables, and let g(x) be a regular function with index α. Let {αni:1≤i≤n,n≥1} be an array of real numbers satisfying max 1≤i≤n|ani|=0((g(n))^-1). In this paper, it is taken advantage of truncation, a set of sufficient conditions such that complete convergence for weighted sums of arrays of ND random variables are obtained. The well-known results by before scholars are extended.
作者 孟兵 吴群英
出处 《纯粹数学与应用数学》 CSCD 2010年第1期84-90,106,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(10661006) 广西"新世纪十百千人才工程"专项资金(2005214) 广西自然科学基金(桂科自0728212)
关键词 行间ND阵列 加权乘积和 完全收敛性 正则变化函数 慢变函数 array of rowwise ND random variables, weighted product sum, complete convergence, regular varying function, slowing varying function
  • 相关文献

参考文献7

二级参考文献19

  • 1苏淳,中国科学.A,1996年,26卷,2期,1091页
  • 2Zhao L C,Chin Ann Math B,1985年,4卷,1期,95页
  • 3陈希孺,线性模型参数的估计理论,1985年
  • 4Hsu P L,Proc Natl Acad Sci USA,1947年,33卷,25页
  • 5Joag-dev K, Proschan F. Negative association of random variables with applications. Ann Statist,1983, 11: 286-295.
  • 6Liu J J, Gan S X, Chen P Y. The Hajeck-Renyi inequality for the NA random variables and its application. Statist. Probab. Lett., 1999, 43: 99-105.
  • 7Shao Q M. A comparison theorem on maximal inequalities between negatively associated and independent random variables. J Theor Probab, 2000, 13(2): 343-356.
  • 8Stout W FI Almost Sure Convergence. New York: Academic Press, 1974.
  • 9Bingham N H, Coldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge University Press, 1987.
  • 10Stout W F. Some results on the complete and almost sure convergence of linear combinations of independent random variables and martingale differences. Ann Math Statist, 1968, 39: 1549-1562.

共引文献25

同被引文献31

  • 1薛留根.混合序列强大数定律的收敛速度[J].系统科学与数学,1994,14(3):213-221. 被引量:17
  • 2季洁鸥,林正炎.同分布ND序列加权和的强大数律[J].浙江大学学报(理学版),2007,34(5):499-504. 被引量:4
  • 3Owen A B. Empirical likelihood ratio confidence regions [J]. Ann. Statist., 1990,18(1):90-120.
  • 4Zhang Junjian. Empirical likelihood for NA series [J]. Statist, and Probab. Let., 2006,76:153-160.
  • 5Hall P, La S B. Methodology and algorithms of empirical likelihood [J]. International Statisticl Review, 1990,58(2):109-127.
  • 6Owen A B. Empirical likelihood ratio confidence intervals for a single functional [J]. Biometrika, 1988,75(2):237-249.
  • 7Owen A B_ Empirical likeliood for linear models [J]. Ann. Statist., 1991,19(4):1725-1747.
  • 8蒋远营.混合相依随机变量序列极限理论的若干结果[D]广西师范大学,广西师范大学2008.
  • 9Wang Yuebao,Gao Qingwu,Wang Kaiyong,et al.Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial and Management Op-timization . 2009
  • 10Bozorgnin A,Patterson R F,Taylor R L.Limit theorems for negatively dependent random variables. . 1993

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部