期刊文献+

混沌时滞随机神经网络同步控制 被引量:2

Synchronization control of chaotic and stochastic neural networks with time delay
下载PDF
导出
摘要 研究了一类混沌时滞随机神经网络同步控制问题.采用更具一般性的时滞反馈控制器,通过巧妙地构造Lyapunov函数,分别得到了均方指数同步和均方渐近同步两个判别准则.仿真例子表明,新准则是有效的. The synchronization control problem of a class of chaotic and stochastic neural networks with time delay is investigated. Via constructing appropriate Lyapunov functionals, two decision criteria ensuring exponential stability and asymptotic stability are obtained, respectively. The delayed feedback controller used in this letter is more general than those used in previous literatures. Simulation example shows that the results obtained in this paper are valid.
出处 《纯粹数学与应用数学》 CSCD 2010年第1期151-157,共7页 Pure and Applied Mathematics
基金 国家重点基础研究发展计划(973)(2010CB732501) 国家自然科学基金(10961008)
关键词 同步控制 随机 混沌 神经网络 synchronization control, stochastic, chaos, neural network
  • 相关文献

参考文献12

  • 1Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letter, 1990,64(8):821-824.
  • 2Carroll T L, Pecora L M. Synchronization chaotic circuits[J]. IEEE Transactions on Circuits and Systems, 1991,38(4):453-456.
  • 3Yang Y Q, Cao J D. Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects[J]. Physica A, 2007,386:492-502.
  • 4Yau H T, Yan J J. Chaos synchronization of different chaotic systems subjected to input nonlinearity[J]. Applied Mathematics and Computation, 2008,197:775-788.
  • 5Zhang Q J, Lu J A. Chaos synchronization of a new chaotic system via nonlinear control[J]. Chaos, Solitons and Fractals, 2008, 37:175-179.
  • 6Yau H T, Chen C L. Chaos control of Lorenz systems using adaptive controller with input saturation[J]. Chaos, Solitons and Fractals, 2007,34:1567-1574.
  • 7Zhou S B, Li H, Zhu Z Z. Chaos control and synchronization in a fractional neuron network system[J]. Chaos, Solitons and Fractals, 2008,36:973-984.
  • 8杨逢建,张超龙,吴东庆,陈新明.时滞Hopfield神经网络的全局指数稳定性[J].纯粹数学与应用数学,2008,24(1):179-185. 被引量:1
  • 9Liu T, Dimirovski G M, Zhao J. Exponential synchronization of complex delayed dynamical networks with general topology[J]. Physica A, 2008,387:643-652.
  • 10Yu W, Cao J D. Synchronization control of stochastic delayed neural networks[J]. Physica A, 2007,373:252- 260.

二级参考文献10

  • 1钟守铭.具有时滞的细胞神经网络的稳定性[J].电子学报,1997,25(2):125-127. 被引量:14
  • 2Chua L O, Yang T.Cellular neural network: Theory[J]. IEEE Trans CAS-I, 1988,35(9): 1257-1272.
  • 3Chua L O, Yang T. Cellular neural network: Application[J]. iEEE Trans CAS-I, 1988,35(9): 1273-1290.
  • 4Goplasam K, He X. Stability in asymmetric hopfield nets with transmission delays[J]. Phys D, 1994, 76(4): 344-358.
  • 5Morita M. Associative memory with non-montone Dynamics[J]. IEEE Trans on Neural Net., 1993, 6(1): 115-126.
  • 6Liao Xiaoxin. Stability of Hopfield-type neural netwoks(Ⅰ)[J]. Science in China, 1995, 38(4): 407-418.
  • 7Liao Xiaoxin, Liao Yang. Stability of Hopfield-type neural netwoks(Ⅱ)[J]. Science in China, 1997, 40(8): 813-816.
  • 8夏道行,吴卓人,严绍宗.实变函数与泛函分析[M].北京:高等教育出版社,1986.
  • 9曹进德,周冬明.时延细胞神经网络的全局稳定性分析[J].生物数学学报,1999,14(1):65-71. 被引量:13
  • 10曹进德,林怡平.一类时滞神经网络模型的稳定性[J].应用数学和力学,1999,20(8):851-855. 被引量:24

同被引文献23

  • 1王建根,赵怡.时滞输出反馈非恒同主从耦合混沌系统一致同步的判据[J].控制理论与应用,2005,22(4):543-546. 被引量:1
  • 2YU Fang, JIANG Haijun. Global exponential synchronization of fuzzy cellular neural networks with delays and reaction-diffusion terms []].Neurocomputing, 74(2011):509-515.
  • 3BAI E W, LONNGREN K E. Sequential synchronization of two Lorenz system using active control [J]. Chaos.Solitom and Fractals, 11 (2000): 1041-1044.
  • 4SUYKENS J A K, YANG T, Chua LO. Impulsive synchronization of chaotic systems by measurement feedback[l]. Int.J.Bifur.Chaos, 8(1998),6:1371-1381.
  • 5U Wenwu, CAO Jinde, LU Wenlian. Synchronization control of switched linearly coupled neural networks with delay[J]. Neurocomputing, 73(2010):858-866.
  • 6Y. Tang, J.A. Fang. Robust synchronization in an array of fuzzy delayed cellular neural networks with stochastically hybrid coupling [J]. Neurocomputing, 2009, 72: 3253-3262.
  • 7E.W.Bai, K.E.Lonngren. Sequential synchronization of two Lorenz system using active control [J]. Chaos. Solitons and Fractals, 2000, 11: 1041-1044.
  • 8L. Sheng, H.Z.Yang. Exponential synchonization of a class of neural networks with mixed time-varying delays and impulsive effects [J]. Neurocomputing, 2008, 71: 366-3674.
  • 9J. Lu, X. Han, Y. Li, M. Yu. Adaptive coupled synchronization among multi-Lorenz systems family [J]. Chaos, Solitons and Fractals, 2007, 31: 866-878.
  • 10Z. Schuss. Theory and applications of stochastic differential equations[J]. Wiley, New York, 1980.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部