期刊文献+

基于线性矩和小波变换的医学图像特征提取 被引量:2

Medical Image Feature Extraction Based on L-moment and Wavelet Transform
下载PDF
导出
摘要 应用小波矩作为图像特征量以及小波变换进行医学图像的自动特征提取,利用小波变换对线性矩进行分析,提取图像的各分辨率下的小波系数经快速傅里叶变换作为特征。使计算量和数据量大大减少,为特征的选取带来方便。矩特征由于其良好的稳定性、抗噪性和旋转不变性在图像识别中受到了广泛的关注和应用。由小波矩来构造目标的旋转不变性的特征,可以克服传统矩的弊端,又具有旋转不变性的特征。 Wavelet moment as an image characteristic quantity and the use of wavelet transform for medical image automatic feature extraction using wavelet transform analysis of linear moments to extract the image of the wavelet coefficients of the various resolutions by the fast Fourier transform as the feature. To calculate volume and significandy reduced the amount of data, in order to bring convenience to the selection of features. Moment feature because of its good stability, anti-noise and rotation invariance in image recognition has been widespread concern and applications. Wavelet to construct the target from the moment the rotation invariant features, can overcome the shortcomings of the traditional moments ,but also has rotation invariant features.
作者 雷赟 龚葵花
出处 《科技信息》 2010年第3期45-46,59,共3页 Science & Technology Information
关键词 小波变换 线性矩 自动特征提取 Wavelet transform L-moment Automatio Feature Extraction
  • 相关文献

参考文献4

二级参考文献27

共引文献34

同被引文献21

  • 1韩争胜,李映,张艳宁.基于LDA算法的人脸识别方法的比较研究[J].微电子学与计算机,2005,22(7):131-133. 被引量:20
  • 2黄轩宇.基于KL投影LDA人脸识别及正交辨识分析[A].江苏省通信学会论文集[C].南京:2004.
  • 3AKGUL C B, RUBIN D L, NAPEL S, et al, Content-based image retrieval in radiology: current status and future directions [ J]. Journal of Digital Imaging, 2011,24(2) : 208 -222.
  • 4WEI C H, LI Y, LI C T. Effective extraction of Gabor features for adaptive mammogram retrieval [ C]//Proceedings of the 2007 IEEE International Conference on Multimedia and Expo. Washington, DC: IEEE Computer Society, 2007:1503 - 1506.
  • 5MOHAMED M H, ABDELSAMEA M M. An efficient clustering based texture feature extraction for medical image [ C]// Proceedings of the 2008 11 th International Conference on Computer and Information Technology. Piscataway, NJ: IEEE, 2008:88-93.
  • 6BATMANGHELICH N K, TASKAR B, DAVATZIKOS C. Generative-discriminative basis learning for medical imaging [ J]. IEEE Transactions on Medical Imaging, 2012, 31(1) : 51 -69.
  • 7MALIK J, BELONGIE S, LEUNG T, et al. Contour and texture analysis for image segmentation [ J]. International Journal of Computer Vision, 2001,43(1) : 7 -27.
  • 8VARMA M, ZISSERMAN. A statistical approach to texture classification from single images [ J]. International Journal of Computer Vision, 2005, 62(1/2) : 61 - 81.
  • 9BAI X, YANG X, LATECKI L J, et al. Learning context-sensitive shape similarity by graph transduction [ J]. IEEE Transaetion on Pattern Analysis and Machine Intelligence, 2010, 32(5):861 -874.
  • 10KONTSCHIEDER P, DONOSER M, BISCHOF H. Beyond pairwise shape similarity analysis [ M] // ZHA H, TANIGUCHI R, MAYBANK S. Computer Vision--ACCV 2009, LNCS 5996. Berlin: Springer, 2010:655-666.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部