期刊文献+

PQR*TDBSCAN改进算法

AN Improve Algorithm based PQR*TDBSCAN
下载PDF
导出
摘要 DBSCAN是基于密度的聚类算法的一个典型代表。但是DBSCAN算法在处理大规模数据库时,存在很大欠缺。PQR*TDBSCAN是针对DBSCAN算法内存使用过大、I/O消耗过多等方面提出的,但是在实际应用中发现存在异常挂死的可能。本文针对PQR*TDBSCAN的缺陷进行了改进。测试表明,本算法在处理海量数据过程中降低了DBSCAN对时间和空间的需求。 DBSCAN algorithm is an outstanding representative of density based on clustering algorithms. However, there are some defects when dealing with large-scale database. Aiming at requiring large volume of memory support and needing a lot of I/O costs, a PQR*TDBSCAN algorithm is presented. But actually there is the possibility of making the algorithm goes to the abnormal status. In this paper, a PQR*TDBSCAN improve algorithm is presented. Experimental results show that the new algorithm is superior to the original DBSCAN in efficiency.
作者 王红 许璠 崔洪晶 许慧 WANG Hong, XU Fan, CUI Hong-jing, XU Hui (Computer CoUege.,Shandong Xiehe Vocational and Technical College, Jinan 250107, China)
出处 《电脑知识与技术》 2010年第02Z期1035-1037,共3页 Computer Knowledge and Technology
关键词 DBSCAN 数据分区 QR*树 并行计算 DBSCAN data-partitioning QR*-tree parallel computing
  • 相关文献

参考文献14

二级参考文献32

共引文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部