期刊文献+

基于改进的K均值聚类彩色图像分割方法 被引量:6

Color Image Segmentation Method Based on an Improved K-means Clustering Algorithm
下载PDF
导出
摘要 提出了一种改进的K均值聚类图像分割方法。针对彩色图像的像素特征,利用Ohta等人的研究成果,选取能有效表示彩色像素特征的彩色特征集中的第一个分量作为图像像素的一维特征向量,用来替代经典K均值聚类图像分割中的灰度.大大降低了运算量。基于粗糙集理论的算法,求出初始聚类个数与均值。选用对特征空间结构没有特殊要求的特征距离代替欧氏距离,应用改进的K均值聚类算法对样本数据进行聚类,从而实现对彩色图像的快速自动分割。实验表明,该图像分割算法可有效提高图像分类的精度和准确度,并且运算代价小.收敛速度快。 A new image segmentation method based on an improved K-means clustering algorithm is proposed in this paper. To reduce the computational cost, the first component of color feature set discovered by Ohta et al. is chosen as the one-dimensional eigenvector. It is used as the image gray in the image segmentation method employing the classic K-means clustering method. Applying the algorithm based on the rough set theory, the number and the centroids of the clusters are obtained, which initialize the kernel K-means clustering. Feature distance, which is suitable for any structure of eigenvector space, is used instead of Euclidian distance to overcome the influence caused by the structure of eigenvector space. Then an improved K-means clustering algorithm is introduced to cluster the sample data. Experimental results show that the presented image segmentation method can effectively improve the precision and accuracy of image segmentation, and has small computational cost and fast convergence speed.
作者 王慧 申石磊 WANG Hui, SHEN Shi-lei (1.School of Computer & Information Engineering, Henan University, Kaifeng 475004, China; 2.Computing Center, Henan University, Kaifeng 475004,China)
出处 《电脑知识与技术》 2010年第2期962-964,共3页 Computer Knowledge and Technology
基金 国家自然科学基金项目(60873133) 国家“863”高科技计划项目(2007AA01Z478)
关键词 图像分割 粗糙集 K均值聚类 特征向量 image segmentation rough sets K-means clustering eigenvector
  • 相关文献

参考文献8

二级参考文献10

  • 1吴国雄,陈武凡.图像的模糊增强与聚类分割[J].小型微型计算机系统,1994,15(11):21-26. 被引量:22
  • 2]Pawan Lingras. rough set clustering for web mining.
  • 3Sahoo P K et al. A survey of thresholding techniques. Comput.Vision, Graphics, Image Process, 1988,41 (2) : 233-260.
  • 4Sarabi A, Aggarwal J K. Segmentation of chromatic images.Pattern Recognition. 1981,13(6) :417-427.
  • 5Ohta Y, Kanada T, Sakai T. Color information for region segmentation. Comput. Graphics Image Processing. 1980,13(2):224-241.
  • 6Pal N R, Pal S K. A review on image segmentation techniques.Pattern Recognition, 1993,26(9):1277-1294.
  • 7Castleman K R. Digital signal processing. Prentice-hall International, Inc. 北京:清华大学出版社,1997:447~562
  • 8陈廷标,夏良正编著.数字图象处理.北京:人民邮电出版社,1989:358~487
  • 9薛景浩,章毓晋,林行刚.基于特征散度的图像FCM聚类分割[J].模式识别与人工智能,1998,11(4):462-467. 被引量:15
  • 10徐立中,王慧敏,刘美林,杨锦堂.粗糙集理论在图像增强中的应用[J].数据采集与处理,1999,14(3):307-310. 被引量:28

共引文献45

同被引文献76

  • 1宋晓建,杨玲.基于图像退化模型的天气现象识别[J].成都信息工程学院学报,2011,26(2):132-136. 被引量:4
  • 2龚巍,林茂松.一种改进的边缘生长彩色图像分割方法[J].微电子学与计算机,2007,24(6):194-197. 被引量:5
  • 3彭华,许录平.用于彩色图像分割的改进遗传FCM算法[J].光电工程,2007,34(7):126-129. 被引量:9
  • 4梁高权.甚低频波和超低频波的辐射与传播[M].武汉:海军工程大学电子工程学院,2002.262-263.
  • 5Milind M. Mushrif,Ajoy K. Ray.Color image segmentation: Rough-set theoretic approach[J]. Pattern Recognition Letters . 2007 (4)
  • 6Frank Y. Shih,Shouxian Cheng.Automatic seeded region growing for color image segmentation[J]. Image and Vision Computing . 2005 (10)
  • 7James C. Bezdek?.Cluster Validity with Fuzzy Sets[J]. Cybernetics and Systems . 1973 (3)
  • 8Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69(3):46-61.
  • 9Komaki G M, Kayvanfar V. Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time[J]. Journal of Computational Science, 2015:109-120.
  • 10Muangkote N, Sunat K, Chiewchanwattana S. An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional- link nets [C]//Computer Science and Engineering Conference (ICSEC), 2014 International. IEEE, 2014: 209-214.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部