期刊文献+

正则密群上的同余(英文)

Congruences on regular cryptogroups
下载PDF
导出
摘要 定义了正则密群S上的同余成分(ξ,ηα)和二元关系ρ(ξ,ηα),证明了(ξ,ηα)是同余成分当且仅当ρ(ξ,ηα)是S上的同余,最后刻划了正则密群上的最小纯正同余。 A congruence aggregate (ζ,ηα) and a relation p(ζ,ηα) for a regular cryptogroup S were defined It was proved that if (ζ,ηα) is a congruence aggregate, then p(ζ,ηα) is a congruence on S and converse The least orthodox congruence on regular cryptogroups was described finally.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期105-108,112,共5页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by the National Natural Science Foundation of China(10871161)
关键词 正则密群 同余成分 同余 regular cryptogroup congruence aggregate congruence
  • 相关文献

参考文献8

  • 1PETRICH M, REILLY N. Completely regular semigroups[M]. Toronto: John Wiley & Sons, 1999: 243-342.
  • 2PETRICH M. Congruences on completely regular semigroups[J]. Canad J Math, 1989, 41(13): 439-461.
  • 3PETRICH M. The kernel relation for a completely regular semigroup[J]. J Algebra, 1995, 172(90): 90-112.
  • 4PASTIJN F J, PETRICH M. Congruences on regular semigroups[J]. Trans Amer Math Soc, 1986, 259(2): 607-633.
  • 5Luo Yan-feng, ZHAO Qiang. Good congruence lattice on a kind of abundant semigroups[J]. Journal of Lanzhou University: Natural Sciences, 2005, 41(4): 96-99(In Chinese).
  • 6Luo Yan-feng, YANG Dong. Some congruences on eventually regular semigroups[J]. Journal of Lanzhou University: Natural Sciences, 2003, 39(3): 1-3(In Chinese).
  • 7LI Xiao-ling. Completely simple semigroup congruences on regular semigroup[J]. Journal of Lanzhou University: Natural Sciences, 2006, 42(2): 96-98(In Chinese).
  • 8SHI Yong-fang, LI Xiao-ling. Group congruences on an eventually regular semigroup[J]. Journal of Lanzhou University: Natural Sciences, 2005, 41(5): 117-119(In Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部