期刊文献+

一类四阶椭圆型变分不等式的二重网格算法

A two-grid projection algorithm for a kind of elliptic variational inequality with fourth order
下载PDF
导出
摘要 构造了一类四阶椭圆型变分不等式的双重网格投影法。首先利用罚方法将原变分不等式问题转换为一个非线性罚形式的变分方程;由Marchuk-Yanenko格式将罚方程转化为两个嵌套求解的子问题。针对两个子问题的求解网格不同,引入双重网格投影方法,建立了两种网格近似函数之间的联系;再利用Newton方法求解非线性方程。最后给出了数值算例,说明了方法的有效性。 A two-grid projection algorithm for a kind of elliptic variational inequality with fourth order was presented. First, the original problem was reduced to a nonlinear variational equation by the penalty method. Using Marchuk-Yanenko scheme, the penalised equation changed into two coupling sub-problems. As the numerical methods for these two sub-problems needed a different mesh, a projection between two different meshes was established, Newton method was used to solve the nonlinear equation. Finally the numerical example showed the efficiency of this method.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期109-112,共4页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(10201026 10672111)
关键词 椭圆型变分不等式 双重网格投影法 罚方法 NEWTON方法 elliptic variational inequality two-grids method penalty method Newton method
  • 相关文献

参考文献8

  • 1GLOWlNSKI R, LION J L, TREMOLIERES R. Numerical analysis of variational inequalities[M]. Amsterdam: North-Holland,1981: 118-246.
  • 2GLOWINSKI R. Numerical methods for nonlinear variational problems[M]. New York: Springer- Verlag, 1984: 27-41.
  • 3DUVAUT G, LION J L. Inequalities in mechanics and physics[M]. Berlin: Springer-Verlag, 1976: 1-60.
  • 4HACKBUSCH W. Multi-grid method and applications[M]. Berlin: Springer-Verlag, 1985: 45-88.
  • 5GLOWlNSKI R, KUZNETZOV Y, PAN T W. A penalty Newton conjugate gradient method for the solution of obstacle problems[J]. C R Acad Sci Paris, Sdr I, 2003, 336: 435-440.
  • 6CABOUSSAT A. GLOWINSKI R. A two-grids projection algorithm for obstacle problems[J]. Computers and Mathematics with Application, 2005, 50: 171-178.
  • 7沈洁,丁睿.动态弹塑性扭转问题的双重网格投影法[J].苏州大学学报(自然科学版),2008,24(1):7-12. 被引量:1
  • 8MARCHUK G I. Splitting and alternating direction methods[C]//Ciarlet P G, Lions J L. Handbook of Numerical Analysis Volume I. Amsterdam: Elsevier, 1990: 197-462.

二级参考文献8

  • 1Duvaut G, Lions J L. Inequalities in Mechanics and Physics [ M ]. Berlin: Springer-Verlag, 1976.
  • 2Kothe D B. Perspective on Eulerian Finite Volume Methods for Incompressible Interracial Flows, Free Surface Flows (Udine, 1997 ) [ M ]. Vienna: Springer-Verlag, 1998.
  • 3Glowinski R, Lions J L,Tremolieres R. Numerical Analysis of Variational Inequalities [ M ]. Amsterdam : North-Holland, 1981.
  • 4Glowinski R. Numerical Methods for Nonlinear Variational Problems [ M ]. New York:Springer-Verlag, 1984.
  • 5Maronnier G I. Splitting and alternating direction methods [ C ]// Ciarlet P G, Lions J L. Handbook of Numerical Analysis. Volume I. Amsterdam : Elsevier, 1990 : 197-462.
  • 6Maronnier V, Picasso M, Rappaz J. Numerical simulation of free surface flows [ J]. J Computational Physics, 1999,155:439-455.
  • 7Glowinski R, Kuznetzov Y, Pan T W. A penalty Newton conjugate gradient method for the solution of obstacle problems [ J ]. C R Acad Sci Paris, Ser. I, 2003,336:435-440.
  • 8Caboussat A ,Glowinski R. A two-grids projection algorithm for obstacle problems [ J ]. Computers and Mathematics with Application ,2005,50 : 171-178.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部