期刊文献+

剪切作用下变曲率纳米孔洞附近的弹性场 被引量:1

Elastic field near nonuniform curvature nano-cavity under shear loading at infinity
下载PDF
导出
摘要 基于表面弹性力学,利用Boussinesq-Sadowsky位移势函数方法,研究了在剪切作用下,无限大介质中具有变曲率纳米椭球孔洞附近的弹性场。结果表明它们强烈依赖孔洞的大小、形状和表面能。这些特征有助于解释纳米尺度下材料的特殊力学性质。 Based on surface elasticity theory we considered the effect of interface energy on the elastic fields near a spheroidal nano-cavity embedded in an elastic medium. Using Boussinesq-Sadowsky potential function method, we obtained the deformation field near the cavity subjected to a shear loading at infinity. The results show that the elastic fields near the nano-inclusion depend strongly on the interface properties, the size, shape of inclusion and loadings. These new characteristics may be helpful in understanding various relevant mechanical performances of nanomaterials.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期137-142,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(10872083) 兰州理工大学博士基金项目(2008)
关键词 界面能 弹性场 孔洞 纳米 interface energy elastic field cavity nanometer
  • 相关文献

参考文献23

  • 1SHODJA H M, SARVESTANI A S. Elastic fields in double inhomogeneity by the equivalent inclusion method[J]. ASME J Appl Mech, 2001, 68(1): 3-10.
  • 2DUAN Hui-ling, WANG Jian-xiang, HUANG Zhuping, et al. Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings[J]. Proc R Soc A, 2005, 461(2056): 1 055-1 080.
  • 3ZHANG Wei-xu, WANG Tie-jun. Effect of surface energy on the yield strength of nanoporous materials[J]. Applied Physics Letters, 2007, 90(6), 063104.1-063104.3.
  • 4SADOWSKY M A, STERNBERG E, CHICAGO H L. Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress per- pendicular to the axis of revolution of cavity[J]. ASME Journal of Applied Mechanics, 1947,69(3): A191-A201.
  • 5EDWARDS R He CHICAGO H L. Stress concentrations around spheroidal inclusions and cavities[J]. ASME Journal of Applied Meehanies,1951, 18(1): 19-30.
  • 6ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proc R Soc A, 1957, 241(4): 376-396.
  • 7WONG E, SHEEHAN P E, LIEBE C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.
  • 8ZHOU L G, HUANG Han-chen. Are surfaces elastically softer or stiffer?[J] Applied Physics Letters, 2004, 84(11): 1940-1 942.
  • 9GURTIN M E, MURDOCH A I, Surface stress in solids[J]. Int J Solids and Structures, 1978, 14(4): 431-440.
  • 10MILLER R E, SHENOY V B. Size-dependent elastic properties of nanosized structural elements[J]. Nanotechnology,2000,11(3): 139-147.

同被引文献17

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部