期刊文献+

基于QPSO的数控加工切削参数优化

Computer Numerical Control Machining Parameter Optimization Based on Quantum Particle Swarm Optimization
下载PDF
导出
摘要 QPSO是基于PSO的改进算法,具有全局搜索能力强,收敛速度快、鲁棒性高等特点。现利用QPSO对根据数控加工中机床和刀具的实际约束而建立的以进给量和切削速度为变量的数学模型进行优化,仿真结果表明经过QPSO优化得到的进给量和切削速度的值比经验值更能满足生产率最大化和生产成本最小化的要求,同时也明显优于PSO。 QPSO (quantum particle swarm optimization) is owing to the PSO (particle swarm optimization) improvement algorithm. It has an advanced characteristics of strong overall situation searching ability, high convergence speed and high rude stick. This paper uses QPSO to optimize the mathematic model according to the variable of CNC machine tool and cutting feed and speed. The simulated result imdicates that the cutting feed and speed values which are optimized by QPSO are more applied to the requirements of high production and low production costs and the values are obviously better than those of PSO.
作者 胡云
出处 《机械制造与自动化》 2010年第1期135-137,共3页 Machine Building & Automation
关键词 数控加工 切削参数 优化 QPSO PSO numerical control machining cutting parameters optimization QPSO PSO
  • 相关文献

参考文献3

  • 1Jun Sun, bin Feng, wenbo Xu. Particle swarm optimization with particles having quantum behavior [ C ]. Proceedings of the IEEE Congress on Evolutionary Computation, Portland, USA, 2004.
  • 2李盘荣,须文波.基于QPSO方法优化求解TSP[J].计算机工程与设计,2007,28(19):4738-4740. 被引量:12
  • 3Liang Ming, Tet Yeap, Saeed Rahmati, et al. Fuzzy control of spindle power in end milling processes [ J 1- International Journal of Machine Tools & Manu ,2002,42 : 1487.

二级参考文献6

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2张利彪,周春光,刘小华,马铭.粒子群算法在求解优化问题中的应用[J].吉林大学学报(信息科学版),2005,23(4):385-389. 被引量:39
  • 3徐玖平,胡知能等.运筹学[M].北京:科学出版社,2004.
  • 4Sun Jun,Feng Bin,Xu Wenbo.Particle swarm optimization with particles having quantum behavior[C].Proceedings of the IEEE Congress on Evolutionary Computation.Portland,Oregon:IEEE Press,2004:325-331.
  • 5Liu Jing,Xu Wenbo,Sun Jun.Quantum-behaved particle swarm optimization with mutation operator[C].Tools with Artificial Intelligence.Hong Kong,China:IEEE Press,2005:237-240.
  • 6黄岚,王康平,周春光,庞巍,董龙江,彭利.粒子群优化算法求解旅行商问题[J].吉林大学学报(理学版),2003,41(4):477-480. 被引量:139

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部