期刊文献+

蛇纹石内氧化效应对铁基金属磨损表面自修复层生成的作用 被引量:21

The Effect of Internal Oxidation from Serpentine on Generating Reconditioning Layer on Worn Ferrous Metal Surfaces
下载PDF
导出
摘要 以蛇纹石,矿物质羟基硅酸镁Mg6(Si4O10)(OH)8,为主成分的自修复剂对金属磨损表面的修复作用,在我国已得到较为广泛关注和认同。文中以在内燃机车柴油机缸套内表面生成的自修复层为例,通过SEM,XRD,XPS,AES,Laser Raman,HRTEM,STEM和纳米硬度计等表面分析和测量手段,深入观察和分析了磨损表面自修复层的生成机理。结果表明:蛇纹石的高化学活性使氧原子、氧离子和自由水从表面向内部强扩散,铁基金属的合金成分渗碳体(Fe3C)被氧化。这是有别于高温内氧化的一种特殊的内氧化过程,对磨损表面生成自修复层有决定性的作用。进而,摩擦副的相对往复运动诱发内氧化组织的形变细化和形变强化,形成性能优异的自修复保护层。 The restoring effect on worn metal surfaces from auto-reconditionging agent containing serpentine, mineral magnesium silicate hydroxide of empirical formula Mg6(Si4O10)(OH)8, as a main component has been widely interested and recognized by specialists in the fields of both science and technology in our country. As an example, the genaration mechanisms of reconditioning layer on cylinder bore of a locomotive diesel engine were observed and investigated in detail through various means of surface analysis and measurememt including SEM, XRD, XPS, AES, Laser Raman, HRTEM, STEM, and Nanoindentor. The results indicate that the strongly diffusing in of oxygen atom, ion and free water from the metal surface by high chemical activity of serpentine results in oxidation of alloy component (Fe3C) of Fe-based metal. This is a special internal oxidation process quite different from the high temperature internal oxidation which plays a crucial role to form the reconditioning layer. Sequentially, the deformed refinement and strengthening of the intemal oxidation structure under reciprocating movement of the fiction pair bring on the reconditioning protective layer with excellent behaviors.
作者 金元生
出处 《中国表面工程》 EI CAS CSCD 北大核心 2010年第1期45-50,56,共7页 China Surface Engineering
基金 科技部科技型中小企业技术创新基金支持项目(08C26211101608)
关键词 蛇纹石 磨损自修复 表面扩散 内氧化 形变组织强化 serpentine auto-recondition ofwom metal surface diffusing intenal oxidation deformed structure strengthening
  • 相关文献

参考文献29

  • 1Wicks F J, Whittaker E J W, A reappraisal of the structures of the serpentine minerals [J]. Canadian Minera-logist, 1975, 13: 227-243.
  • 2Mellini M, Zanazzi P F. Crystal structures of lizardite-IT and lizardite-2Hl from Coli [J]. Italy, American Mineralogist, 1987, 72: 943-948.
  • 3Mckelvy M J, Chizmeshya A G, Diefenbacher J, et al. Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions [J]. Environ, Sci. Technol, 2004, 38: 6897-6903.
  • 4Page N J. Chemical differences among the serpentine "Polymophs" [J]. The American Mineralogist, 1968, 53: 201-215.
  • 5Rinaudo C, Gastaldi D. Characterization of chrysotile, antigorite and lizardite by FT-raman spectroscopy [J]. The Canadian Mineralogist, 2003, 41: 883-890.
  • 6Bailey S W, Banfield J F. Derivation and identification of nonstandard serpentine polytypes [J]. American Mineralogist, 1995, 80:1104-1115.
  • 7Stalder R, Ulmer P. Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriters into the transition zone [J]. Contrib Mineral Petrol, 2001, 140: 670-679.
  • 8Riecker R E, Rooney T P. Weakening of dunite by serpentine dehydration [J]. Science, 1966,152:196-198.
  • 9Sclar C B, Carrison L C, Rooney T P, et al. High-pressure reactions and shear strengh of serpentinized dunite [J]. Science, 1966, 153: 1285-1287.
  • 10Ulmer P, Trommsdorff Vr. Serpentine stability to mantle depths and subduction-related magmatism [J]. Science, 1995, 268: 858-861.

二级参考文献85

共引文献154

同被引文献202

引证文献21

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部