期刊文献+

Hamilton体系下矩形薄板受抛物线压力载荷的屈曲分析 被引量:3

BUCKLING ANALYSIS OF RECTANGULAR THIN PLATES UNDER PARABOLIC COMPRESSIONS AT EDGES IN HAMILTON SYSTEM
下载PDF
导出
摘要 针对四边简支矩形薄板在两对边相向的非线性分布压力下的面内应力分布以及屈曲问题,应用弹性力学的Hamilton体系和Galerkin法进行了研究.基于弹性力学的平面矩形域Hamilton体系,根据辛本征向量展开解法,得到了对应于零本征值和非零本征值的含待定常数的实数型面内应力分布通解.依据必须满足的应力边界条件,导出了矩形薄板在抛物线分布载荷下的面内应力分布.考虑到应力分布表达式的复杂性,用完全的解析方法得到屈曲载荷是不可能的.因此,运用基于虚功原理的Galerkin法,根据四边简支矩形薄板弯曲的位移边界条件,给出了不同长宽比矩形薄板受抛物线分布载荷的屈曲临界载荷.通过与已有文献中DQ法给出的数值计算结果比较,表明了本文求解方法的有效性和正确性.基于所给出的结果,可望为解决矩形薄板在非线性分布载荷下的面内应力分布以及屈曲问题提供一种新的研究方法. The distribution of in-plane stresses and buckling of rectangular elastic thin plates with four edges simply supported, subjected to in-plane pressures along any two opposite edges, are studied by using the Hamilton system of elasticity and Galerkin method. The general solutions of the in-plane stress distribution are obtained by using the symplectic eigen-solution expansion method at first. Then, the Galerkin method is employed for obtaining the buckling loads of rectangular plates with various aspect ratios. The numerical results agree very well with the existing DQ (differential quadrature) data, which confirms the validity of the proposed method. Obviously, the symplectic eigen-solution expansion method provides a new way for solving the bending of rectangular thin plates.
作者 谈梅兰 吴光
机构地区 江苏大学理学院
出处 《固体力学学报》 CAS CSCD 北大核心 2010年第1期53-59,共7页 Chinese Journal of Solid Mechanics
基金 江苏大学高级专业人才科研启动基金(06JDG079)资助
关键词 屈曲 非线性 HAMILTON体系 弹性力学 矩形薄板 buckling, nonlinear, Hamilton system, elasticity, thin rectangular plates
  • 相关文献

参考文献12

  • 1Benoy M B. An energy solution for the buckling of rectangular plates under non-linear in-plane loading [J]. Aeronautical Journal,1969, 73: 974-977.
  • 2Bert C W, Devarakonda K K. Buckling of rectangular plates subjected to nonlinearly distributed in-plane loading[J]. International Journal of Solids and Structures, 2003, 40(16): 4097-4106.
  • 3Devarakonda K K V, Bert C W. Buckling of rectangular plate with nonlinearly distributed compressive loading on two opposite sides: comparative analysis and results[J]. Mechanics of Advanced Materials and Structures,2004, 11(4-5): 433-444.
  • 4Jana P, Bhaskar K. Stability analysis of simplify-supported rectangular plates under non-uniform uniaxial compression using rigorous and approximate plane stress solutions[J]. Thin-Walled Structures, 2006, 44(5) : 507-516.
  • 5甘立飞,王鑫伟,王爱军.矩形薄板受面内非均匀分布载荷稳定性分析[J].宇航学报,2008,29(4):1457-1461. 被引量:4
  • 6Xinwei Wang, Xinfeng Wang, Xudong Shi. Accurate buckling loads of thin rectangular plates under parabolic edge compressions by the differential quadrature method[J]. International Journal of Mechanical Sciences, 2007, 49(4): 447-453.
  • 7Xinwei Wang, Lifei Gan, Yihui Zhang. Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides[J]. Advances in Engineering Software, 2008, 39(6): 497-504.
  • 8Feng K, Qin M Z. The Sympledtic Methods for Computation of Hamiltonian Equations[C]. Proceedings Conference on Numerical Methods for PDE' s (Edited by Zhu Y L, Gao B Y), Berlin, Springer, Lecture Notes in Mathematecs, 1987: 1-37.
  • 9钟万勰,姚伟岸.多层层合板圣维南问题的解析解[J].力学学报,1997,29(5):617-626. 被引量:14
  • 10刘淼,罗恩,仲政.薄板动力学相空间非传统Hamilton变分原理与辛算法[J].固体力学学报,2007,28(2):207-211. 被引量:1

二级参考文献38

共引文献17

同被引文献35

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部