期刊文献+

小分子封闭提高固定化青霉素酰化酶的稳定性

Improvement for catalytic stability of immobilized penicillin acylase by blockage of small molecule reagents
下载PDF
导出
摘要 为提高青霉素酰化酶的催化性能和热稳定性,在酶组装过程中添加小分子试剂对介孔泡沫硅载体表面过量的活化位点进行封闭。详细考察了小分子添加质量分数和种类对青霉素酰化酶负载率、催化活力及热稳定性的影响。实验结果得到:经精氨酸封闭的固定化酶活力提高至1.92倍;甘氨酸封闭的固定化酶5 h的50℃热稳定性提高至2.9倍,甘氨酸和谷氨酸封闭的固定化酶50℃热处理25 h仍保持87.9%和82.2%的残余活力;甘氨酸和谷氨酸封闭的固定化酶最适催化pH值向中性偏移且对pH值的耐受性增强。结果表明,在青霉素酰化酶共价组装过程中添加合适的小分子封闭能显著提高酶的催化性能和热稳定性。 In order to improve catalytic properties and thermal stability of penicillin acylase (PA), small molecule reagents were assembled to quench the excessive active groups of mesoeellular siliceous foams (MCFs). The effects of adding mass fraction and types of small molecule reagents on the coupled yield, the catalytic activity and thermal stability of PA were investigated. The activity of immobilized PA quenched by arginine is enhanced to 1.92 folds, and the thermal stability of immobilized PA preparation blocked by glyein is increased to 2.9 folds at 50℃ for 5 h. The residual activity of PA preparations of glycin and glutamic acid remain 87.9% and 82.2% , respectively, after treatment at 50 ℃for 25 h. The optimum pH of PA preparations of glyein and glutamie acid shifts to neutral, and their tolerance to pH is strengthened. The results indicate that the suitable blockage with small molecule reagents can improve the catalytic properties and thermal stability of PA assembled in MCFs.
出处 《化学工程》 CAS CSCD 北大核心 2010年第2期91-93,102,共4页 Chemical Engineering(China)
基金 十一五国家863项目(2006AA02Z211) 国家自然科学基金资助项目(20376034) 江苏省自然科学基金资助项目(BK2006181) 江苏省高校研究生创新计划项目(2007)
关键词 青霉素酰化酶 固定化酶 介孔泡沫硅 精氨酸 甘氨酸 封闭 penicillin aeylase immobilized enzyme mesocellular siliceous foams arginine glyein blockage
  • 相关文献

参考文献12

  • 1VAN ROON J L, SCHROEN C G P H, TRAMPER J, et al. Biocatalysts : measurement, modeling and design of heterogeneity [ J]. Biotechnology Advances, 2007,25 (2) :137-147.
  • 2KALLENBERG A I, RANTWIJK F V, SHELDON R A. Immobilization of penicillin G aeylase: the key to optimum performance [ J ]. Advanced Synthesis and Catalysis, 2005,347 (7/8) :905-926.
  • 3ITOH T, ISHII R, EBINA T, et al. Effective immobilization of subunit protein in mesoporous silica modified with ethanol [ J ]. Biotechnology and Bioengineering, 2007,97 ( 1 ) :200-205.
  • 4BLANCO R M, TERREROS P, MUNOZ N, et al. Ethanol improves lipase immobilization on a hydrophobic support [ J ]. Journal Molecular Catalysis B: Enzymatic, 2007,47(1/2) : 13-20.
  • 5WANG Anming, WANG Hua, ZHU Shemin, et al. An efficient immobilizing technique of penicillin acylase with combining mesocellular silica foams support and p-benzoquinone cross linker [ J]. Bioprocess and Biosystems Engineering, 2008,31 (5) :509-517.
  • 6KIM H, JUNG J C, YEOM S H, et al. Immobilization of a heteropolyacid catalyst on the aminopropyl-functionalized mesostructured cellular foam (MCF) silica [ J ]. Materials Research Bulletin, 2007,42(12) :2132-2142.
  • 7BRANDFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976,72 (7) :248-254.
  • 8张文德.食品中添加剂甘氨酸的比色分析[J].化学分析计量,1999,8(1):18-19. 被引量:4
  • 9SHEWALE J G, KUMAR K K, AMBEKAR G R. Evaluation of determination of 6-APA by p-dimethylaminoben- zaldehyde[ J]. Biotechnology Techniques, 1987,1 ( 1 ) : 69-72.
  • 10REJIKUMAR S, DEVI S. Immobilization of β-galactosidase onto polymeric supports [ J J. Journal of Applied Polymer Science, 1995,55(6) :871-878.

二级参考文献18

  • 1SHELDON R A. Enzyme immobilization: the quest for optimum performance [ J ]. Advanced Synthesis and Catalysis, 2007, 349(8/9) : 1289-1307.
  • 2DIENDER M B, STRAATHOF A J J, VAN DER DOES T, et al. Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concnmitanl 6-aminopenicillanic acid crystallizatinn [ J ]. Biotechnology and Bioengineering, 2002, 28(4): 395402.
  • 3MONTES T, GRAZU V, MANSO I, et al. Improved stabilization of genetically modified penicillin G acylase in the presence of organic cosolvents by co-immobilization of the enzyme with polyethyleneimine[J]. Advanced Synthesis and Catalysis,2007, 349(3): 459-464.
  • 4JIANG Yangyang, XIA Hansong, GUO Chen, et al. Enzymatic hydrolysis of penicillin for 6-APA production in three-liquid-phase system [ J ]. Applied Biochemistry and Biotechnology, 2008, 144(2): 145-159.
  • 5WANG Zhilong, GUO Yajing, BAO Da, et al. Direct extraction of phenylacetic acid from immobilised enzymatic hydrolysis of penicillin G with cloud point extraction [J]. Journal of Chemical Technology and Biotechnology, 2006, 81(4): 560-565.
  • 6FERREIRA J S, STRAATHOF A J J, FRANCO T T, et al. Activity and stability of immobilized penicillin amidase at low pH values [ J ]. Journal of Molecular Catalysis B : Enzymatic, 2004, 27 ( 1 ) : 29-35.
  • 7SCHMIDT-WINKEL P, LUKENS W W, ZHAO D Y, et al. Mesocellular siliceous foams with uniformly sized cells and windows[J]. Journal of the American Chemical Society, 1999, 121(1 ) : 254-255.
  • 8WANG Anming, WANG Hua, ZHU Shemin, et al. An efficient immobilizing technique of penicillin acylase with combining mesocellular silica foams support and p-benzoquinone cross linker [ J ]. Bioprocess and Biosystems Engineering, 2008, 31 ( 5 ) :509-517.
  • 9MINTON A P. How can biochemical reactions within cells differ from those in test tubes [ J ]. Journal of Cell Science, 2006, 119 (14) : 2863-2869.
  • 10SHEWALE J G, KUMAR K K, AMBEKAR G R. Evaluation of determination of 6-aminopenicillanic acid by p-dimethyl aminobenzaldedyde [ J ]. Biotechnology Techniques, 1987, 1 ( 1 ) : 69-72.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部