摘要
针对传统BP神经网络难以选取具有全局性的初始点的缺点,使用改进的遗传算法全局搜索优化神经网络各层之间的连接权和阈值,提高了BP神经网络的收敛速度和泛化能力。结合高程拟合算例进行训练检验,证明该方法是一种改进BP神经网络的有效方法。
Because the weakness of traditional BP neural network is difficuhy to select the initial point, the improved genetic algorithm with global searching is used for optimization of the link weight and the threshold of the neural network layers for improving the capability of traditional BP neural network. By comparison, the convergence rate and generalization ability of BP based on genetic algorithm are higher than that of the traditional BP neural network. In the example of height fitting, it is proved that the improved algorithm is efficient.
出处
《工程勘察》
CSCD
北大核心
2010年第3期61-64,共4页
Geotechnical Investigation & Surveying
基金
国家自然科学基金项目(40672173)
关键词
BP神经网络
遗传算法
收敛速度
泛化能力
高程拟合
BP neural network
genetic algorithm
convergence rate
generalization ability
height fitting