期刊文献+

关于正整数的六边形数补数

On the Complement of the Hexagon Number of a Positive Integer
下载PDF
导出
摘要 对于任意的正整数n,设a(n)表示n的六边形数补数,即a(n)是使n+a(n)为一六边形数m(2m-1)的最小的非负整数.运用初等方法研究了六边形数补数列{a(n)}的均值性质,并给出了它的两个渐近公式. For any positive integer n,let a(n)denotes the complement of hexagon number. Thus,for any fixed positive n,a(n)is the smallest nonnegative integer number such that n+a(n)is a hexagon number m(2m-1). In this paper,the mean value about the complement of hexagon number sequence is studied using the elementary methods,and obtain two symptomtic formula for it.
作者 王明军
出处 《河南科学》 2010年第2期144-146,共3页 Henan Science
基金 渭南师范学院科研基金项目(07YKZ028)
关键词 六边形数补数 均值 渐近公式 the complement of hexagon number mean value asymptotic formula
  • 相关文献

参考文献1

二级参考文献7

  • 1Smarandache F.Only Problems,not Solutions. Chicago:Xiquan Publ. House,1993.
  • 2Zhu Weiyi. On the k-power complement and k-power free number sequence. Smaran-dache Notions Journal,2004,14:66-69.
  • 3Yao Weili.On the k-power complement sequence.Research on Smarandache Problems in Number Theory.2004,Hexis,43-46.
  • 4Liu Hongyan and Lou Yuanbing. A note on the 29-th Smarandache's problem. Smaran-dache Notions Journal,2004,14:156-158.
  • 5Xu Zhefeng. On the additive k-power complements. Research on Smarandache Problems in NUmber Theory.2004,Hexis,13-16.
  • 6Tom M.Apostol. Introduction to Analytic Number Theory. Springer-Verlag:New York, 1976.
  • 7Pan Chengdong and Pan Chengbiao.The esementary number theory.Beijing University Press:Beijing.2003.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部