期刊文献+

基于稀疏分解的数据分类算法 被引量:1

Data Classification Algorithm Based on Sparse Decomposition
下载PDF
导出
摘要 利用基于超完备字典的信号稀疏分解理论,提出一种基于稀疏分解的数据分类算法SRC。该算法通过学习不同类别数据的稀疏映射关系,把测试样本映射到高维空间中,根据稀疏重构的误差定义决策函数以确定测试样本的类别。采用UCI数据集评估该算法,并与SVM算法和Fld算法的实验结果进行对比,结果表明,SRC的分类准确率最高,不平衡数据集的实验结果显示了SRC的鲁棒性。 With the theory of sparse decomposition of signals over an overcomplete dictionary, this paper proposes a data classification algorithm based on sparse decomposition named SRC. By studying data sparse mapping relationships among different data classes, the test samples are mapped into a higher dimensional space. Decision function is defined according to the error of sparse reconstruction, which determines the class of test samples. It uses UCI dataset to evaluate the effectiveness of the algorithm, and compares the experimental results of Support Vector Machine(SVM) and Fld. The results show that SRC gains the highest accuracy in classification, and it has good robustness in the imbalanced dataset experiment.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第5期57-58,61,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA01Z176)
关键词 超完备字典 稀疏分解 稀疏映射 重构误差 overcomplete dictionary sparse decomposition sparse mapping reconstruction error
  • 相关文献

参考文献6

  • 1Fidler S, Skocaj D, Leonardis A. Combining Reconstructive and Discriminative Subspace Methods for Robust Classification and Regression by Subsampling[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(3): 337-350.
  • 2Temlyakov V. Nonlinear Methods of Approximation[Z]. Columbia,USA: Dept. of Mathematics, University of South Carolina, 2001.
  • 3Mallat S, Zhang Zhifeng. Matching Pursuits with Time Frequency Dictionaries[J]. IEEE Trans. on Signal Processing, 1993, 41(12): 3397-3415.
  • 4Donoho D L, Huo Xiaoming. Uncertainty Principles and Ideal Atomic Decomposition[J]. IEEE Trans. on Information Theory, 2001, 47(7): 2845-2862.
  • 5Aharon M, Elad M, Bruckstein A M. The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation[J]. IEEE Trans. on Signal Processing, 2006, 54(11): 4311-4322.
  • 6Asuncion A, Newman D J. UCI Machine Learning Repository[Z]. [2009-01-13]. http://www.ics.uci.edu/-mlearn/MLRepository.html.

同被引文献19

  • 1刘志东,罗燕,林江莉,廖晓红.基于超声射频RF信号的脂肪肝分级量化方法[J].四川大学学报(工程科学版),2011,43(S1):160-164. 被引量:7
  • 2Mallat Stephane G,Zhang Zhifeng.Matching pursuits with time-frequency dictionaries[].IEEE Transactions on Signal Processing.1993
  • 3Huber PJ.Projection pursuit[].The Annals of Statistics.1985
  • 4Chen S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[].SIAM Review.2001
  • 5Olshausen BA,Field DJ.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[].Nature.1996
  • 6Candes E J.Ridgelets: theory and applications[]..1998
  • 7Candes EJ,Donoho DL.Curcelets a surprisingly effective nonadaptive representation for objects with edges[].Curve and Surface Fitting.1999
  • 8Le Pennec E,Mallat S.Sparse geometric image representation with bandelets[].IEEE Transactions on Image Processing.2005
  • 9Do M N,Vetterli M.The contourlet transform: an efficient directional multiresolution image representation[].IEEE Transactions on Image Processing.2005
  • 10E J Candes,T Tao.Near optimal signal recovery from random projections:Universal encoding strategies[].IEEE Transactions on Information Theory.2006

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部