期刊文献+

基于Delaunay图的反向最近邻查询 被引量:4

Reverse Nearest Neighbor Query Based on Delaunay Diagram
下载PDF
导出
摘要 将查询点作为Delaunay图的一个生成点,利用Delaunay图的生成点与其邻接生成点之间的关系,在查询点的邻接生成点集(元素个数小于等于6)中计算数据集中给定点的反向最近邻。把伴随Delaunay图增量生成过程产生的Delaunay树作为查询索引结构,该结构能存储Delaunay图,在数据点插入和删除时维护Delaunay图的拓扑结构。 This paper takes query point as a generation point of Delaunay diagram and utilizes the relationship between this point and its adjacent generation point to search Reverse Nearest Neighbor(RNN) in adjacent generation point set(less than six elements) of query point. It takes Delaunay tree generated during the process of De^aunay incremental generation as the query index structure, which can store Delaunay diagram and maintain Delaunay diagram topology when a point is added or deleted.
作者 王淼 郝忠孝
出处 《计算机工程》 CAS CSCD 北大核心 2010年第5期59-61,共3页 Computer Engineering
基金 黑龙江省自然科学基金资助项目(F2006-01)
关键词 反向最近邻 Delaunay图 Delaunay树 Reverse Nearest Neighbor(RNN) Delaunay diagram Delaunay tree
  • 相关文献

参考文献9

  • 1Kom F, Muthukrishnan S. Influence Sets Based on Reverse Nearest Neighbor Queries[C]//Proc. of ACM SIGMOD lnt'l Conf. on.Management of Data. New York, USA: ACM Press, 2000: 201-212.
  • 2Stanoi I, Agrawal D, Abbadi A E. Reverse Nearest Neighbor Queries for Dynamic Databases[C]//Proc. of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. [S. l.]: ACM Press, 2000: 44-53.
  • 3Benetis R, Jensen C, Karciauskas G, et al. Nearest Neighbor and Reverse Nearest Neighbor Queries for Moving Objects[C]//Proc. of International Database Engineering and Application Symposium. Edmonton, Canada: [s. n.], 2002.
  • 4Shewchuk J R. Delaunay Refinement Mesh Generation[D]. Pittsburgh, Pennsylvania, USA: Carnegie Mellon University, 1997.
  • 5Fortune S. Voronoi Diagrams and Delaunay Triangulations[M]. New York, USA: CRC Press, 1997: 377-388.
  • 6Guibas L J, Knuth D E, Sharir M. Randomized Incremental Construction of Delaunay and Voronoi Diagrams[J]. Algorithmica, 1992, (7): 381-413.
  • 7Boissonnat J D, Teillaud M. A Hierarchical Representation of Objects: The Delaunay Tree[C]//Proc. of the 2nd Annual ACM Symposium on Computational Geometry. [S. l.]: ACM Press, 1986: 260-268.
  • 8Boissonnat J D, Teillaud M. On the Randomized Construction of the Delaunay Tree[J]. Theoretical Computer Science, 1993, 112(2): 339-354.
  • 9Devillers O. On Deletion in Delaunay Triangulations[C]//Proc. of the 15th Annual ACM Symposium on Computational Geometry. [S. l.]: ACM Press, 1999: 181-188.

同被引文献26

  • 1郝忠孝,刘永山.空间对象的反最近邻查询[J].计算机科学,2005,32(11):115-118. 被引量:11
  • 2Clarkson K L.Nearest Neighbor Queries in Metric Spaces[J].Discrete & Computational Geometry,1999,22(1):63-93.
  • 3Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching [C].Inl~oc. of the ACM SIGMOD Intl. Conf. on Management of Data, Boston, Massachusetts,1984: 47-57.
  • 4Beekmann N, Kriegel H P, Schneider R. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles[C]//Seattle, Washington:Proc of the ACM SIGMOD Intl Conf on Management of Data,1990: 322-331.
  • 5Sellis T K, Roussopoulos N, Faloutsos C. The R+-tree: A Dynamic Index for Multidimensional Objects [C]//Brighton, England:Proc of the 13th lntl Conf on Very Large Databases,VLDB,1987:507-518.
  • 6刘彬.空间数据库中基于R一树的连续最近邻查询方法研究[D].哈尔滨:哈尔滨理工大学,2009.
  • 7Sack J R, Urrutia J.Voronoi Diagrams[M].Handbook on Computational Geometry.Ottawa Elsevier Science,2000:201-290.
  • 8Smid M. Dynamic Rectangular Point Location with an Application to the Closest Pair Problem [C].Tapei,Taiwan:The 2nd International Symposium on Algorithms and Computation,1991: 364-374.
  • 9Shewehuk J R.Delaunay Refinement Mesh Generation[D].Pittsburgh Pennsylvania,USA:Carnegie Mellon University,1997.
  • 10Kom F,Muthukrishnan S.Influence sets based on reverse nearest neighbor queries[C]//Proceedings of the 2000 ACM SIGMOD Interna- ional Conference on Management of Data.Dallas: ACM Press,2000:201-212.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部