期刊文献+

基于相关系数的隐私保护关联规则挖掘 被引量:1

Privacy Preserving Association Rule Mining Based on Correlation Coefficient
下载PDF
导出
摘要 传统的隐私保护关联规则挖掘算法由于没有考虑规则左右件相关系数的影响,对非敏感规则的支持度影响很大。为了减小这种影响,提出通过调整规则左右件相关系数隐藏敏感规则的算法。该算法通过调整相关系数,使敏感规则的价值无法被发现,从而达到隐藏敏感规则的目的。实验结果表明,该算法的规则丢失率和相异度均有所下降。 Traditional privacy preserving association rule mining algorithms do not consider the correlation of the left hand side and the right hand side, which affect non-restrictive rule support negatively. In order to solve the problem, this paper presents an algorithm which adjusts the correlation coefficient to hide restrictive rules because the value of this rule can not be found. Experimental results show that the algorithm has lower miss rate and dissimilarity.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第5期84-85,共2页 Computer Engineering
关键词 关联规则 隐私保护 数据挖掘 相关系数 association rule privacy preserving data mining correlation coefficient
  • 相关文献

参考文献5

  • 1郭宇红,童云海,唐世渭,杨冬青.数据库中的知识隐藏[J].软件学报,2007,18(11):2782-2799. 被引量:14
  • 2Oliveira S R M, Zaiane O R. Privacy Preserving Frequent Itemset Mining[C]//Proc. of the IEEE Workshop on Privacy, Security and Data Mining. Maeoasm, Australian: IEEE Computer Sociaty, 2002, 43-54.
  • 3Oliveira S R M, Zaiane O R. Protecting Sensitive Knowledge by Data Sanitation[C]//Proc. of the 3rd International Confence on Data Mining. [S. l.]: IEEE Computer Sociaty, 2003: 613-616.
  • 4Oliveira S R M, Zaiane O R. A Unified Framework for Protecting Sensitive Association Rules in Business Collaboration[J]. International Journal of Business Intelligence and Data Mining, 2006, 1(3): 247-287.
  • 5HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..

二级参考文献2

共引文献161

同被引文献15

  • 1Oliveira S R M,Zaiane O R.A unified framework for protecting sensitive association rules in business collaboration[J].Intemational Journal of Business Intelligence and Data Mining,2006,1 (3):247-287.
  • 2Janaki B Ramaiah,Dr A Rama Mohan Reddy, kamala Kumari M. Parallel privacy preserving association rule mining on pc clusters [C]. IEEE International Advance Computing Conference, 2009:1538-1542.
  • 3Zaki M J, Hsiao C J. Efficient algorithms for mining closed itemsets and their lattice structure [J]. IEEE Transactions on Knowledge and Data Engineering,2005,17:462-478.
  • 4Oliveira S R M,Zaiane O R.Protecting sensitive knowledge by data sanitation[C].Proc of the 3rd Int'l Conf on Data Mining. IEEE Computer Society,2003:613-616.
  • 5Verykios V S, Elmagarmid A, Bertino E, et al. Association rule hiding [J]. IEEE Trans on Knowledge and Data Engineering, 2004,16(4) :434-447.
  • 6Zhang Xiaoming.Knowledge hiding in data mining by transaction adding and removing [C]. 31 st Annual International Computer Software and Applications Conference,2007:273-274.
  • 7Wu Chieh-Ming, Huang Yin-Fu.An efficient data structure for mining generalized association rules [C]. The 5th International Conference on Fuzzy Systems and Knowledge Discovery,2008: 565-571.
  • 8Sun Wei,Wang Yonggui.Association rule mining algorithm based on Privacy preserving [C].Computer and Automation Engineering,2010:140-143.
  • 9郭宇红,童云海,唐世渭,杨冬青.数据库中的知识隐藏[J].软件学报,2007,18(11):2782-2799. 被引量:14
  • 10张瑞,郑诚,陈娟娟.一种简单的基于隐私保护的关联规则挖掘方法[J].计算机工程与应用,2008,44(28):130-132. 被引量:6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部