期刊文献+

有限域上一类方程在(F^*)^n中的解数公式

The Number of Solutions of a Cubic Equation in over a Finite Field
下载PDF
导出
摘要 设F=Fq是一个q元有限域,F*=Fq*为其乘法群,q=pf,f≥1,p是一个奇素数。该文利用组合的方法给出了有限域上F=Fq上一类三次方程x1x2+x1x2x3+x2x3x4+…+xn-4xn-3xn-2+xn-1xn=b在(F*)n上解数的一个直接公式,这里b∈F=F。 Let F be a finite field with q = p^f elements and let F^* be the multiplicative group of nonzero elements of F, where q=p^f f≥ 1 is an odd prime number. In this paper, the author gives an explicit formula for the number of solutions of the following cubic equation by using some combinatorial methods:x1x2+x1x2x3+x2x3x4+…xn-4xn-2+xn-1xn=b in (F^*)^n,where b∈F
作者 许广魁
出处 《绵阳师范学院学报》 2010年第2期19-21,共3页 Journal of Mianyang Teachers' College
关键词 有限域 三次方程 方程解数 finite field cubic equation solutions of equation
  • 相关文献

参考文献10

  • 1Lidl R,Niederreiter H.Finite fields[].Encyclopedia of Mathematics and its Applications.1983
  • 2Carlitz,L.Pairs of quadratic equations in a finite field[].American Bee Journal.1954
  • 3Cohen E.Congruence representations in algbraic number field[].Transactions of the American Mathematical Society.1953
  • 4Hodges,John H.Representations by bilinear forms in a finite field[].Duke Mathematical Journal.1955
  • 5Hua L K,Vandiver H S.Characters over certain types of rings with applications to the theory of equations in a finite field[].Proceedings of the National Academy of Sciences of the United States of America.1949
  • 6Ax J.Zeros of polynomials over finite fields[].American Journal of Mathematics.1964
  • 7Wan D.Zeros of diagonal equations over finite fields[].Proceedings of the American Mathematical Society.1988
  • 8Wolfmann J.New results on diagonal equations over finite fields from cyclic codes[].Contemporary Mathematics AmerMath Providence RI.1994
  • 9Sun Q.On diagonal equations over finite fields[].Finite Fields and Their Applications.1997
  • 10Wang W,Sun Q.The number of solution of certain equations over a finite field[].Finite Fields and Their Applications.2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部