期刊文献+

粉末冶金泡沫铝发泡参数及准静态压缩性能 被引量:2

Foaming Parameters and Quasi-Static Compressibility of Al Foams Made by PM Route
下载PDF
导出
摘要 利用粉末冶金法成功制备出不同表观密度的铝基泡沫材料,详细探讨了发泡工艺参数对泡孔结构和膨胀行为的影响.结果显示:前驱体自身温度变化分为线性快速升温、温度恒定和快速冷却三个阶段,发泡炉温的选择取决于线性快速升温阶段;比较不同发泡时间的泡孔结构和膨胀行为,可以得出最佳发泡时间和膨胀率分别为120 s和434%;前驱体预热对前驱体升温速率影响不大,但是可以缩短发泡时间.准静态压缩实验结果显示:铝基泡沫材料坍塌阶段的应力没有明显的波动,压缩强度、弹性模量以及压实应变都随着表观密度的增加而增加. Aluminum (Al) foams with different apparent densities were prepared successfully by powder metallurgy (PM) route. The effects of foaming process parameters on cell structures and expansion behavior were discussed in detail. The results showed that the temperature variation of foamable precursors is divided into three phases, i. e., linearly quick rising, constant and quick cooling, and the choice of furnace temperature depends on the linearly quick rising. The optimum foaming time and expansion rate are 120 see and 434 %, respectively, through the comparison of the cell structures and expansion behavior at different foaming times. Preheating precursors does not affect their temperature rising rates obviously but shortens the foaming time. The results of quasi-static compressibility tests showed that no obvious stress fluctuation is found during the collapse process of A1 foams and the compressive strength, elastic modulus and compact stress all increase with apparent density.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第2期221-224,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50774021 50704012) 国家高技术研究发展计划项目(2008AA03Z512)
关键词 泡沫铝 粉末冶金 发泡工艺参数 表观密度 压缩强度 aluminum foam powder metallurgy foaming process parameter apparent density compressive strength
  • 相关文献

参考文献9

  • 1Banhart J. Manufacture, characterization and application of cellular metals and metal foams [ J ]. Progress in Materials Science, 2001,46(6) :559-632.
  • 2Banhart J. Metal foams., production and stability [J ]. Advanced Engineering Materials, 2006,8(9) :781 - 794.
  • 3Baumgartner F, Duarte I, Banhart J. Industrialization of powder compact foaming process[J]. Advanced Engineering Materials, 2000,2(4):168-174.
  • 4Schwingel D, Seeliger H W, Vecchionacci C, et al. Aluminum foam sandwich structures for space applications[J].Acta Astronautica, 2007, 61 (1/2/3/4/5/6): 326 - 330.
  • 5Lefebvre L P, Banhart J, Dunmld D C. Porous metals and metallic foams current status and recent development [ J ]. Advanced Engineering Materials, 2008,10(9) :775 - 787.
  • 6Gergely V, Clyne B. The forrngrip process: foaming of reinforced metals by gas release in precursors[J ]. Advanced Engineering Materials, 2002,2(4) : 175 - 178.
  • 7Banhart J, Stanzick H. Metal foam evolution studied by synchrotron radioscopy [J ]. Applied Physics Letters, 2001, 78(8) : 1152 - 1154.
  • 8Yu H J, Guo Z Q, Li B, et al. Research into the effect of cell diameter of alttminum foam on its compressive and energy absorption properties[J]. Materials Science and Engineering. A, 2007,454/455:542 - 546.
  • 9Esmaeelzadeh S, Simchi A. Foamability and compressive properties of AISi7-3vol.% SiC-0.5wt.% TiH2 powder compact[J ]. Materials Letters, 2008,62 ( 10/11 ) : 1561 - 1564.

同被引文献25

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部