期刊文献+

求解一维Schrdinger方程的P稳定Obrechkoff两步方法 被引量:1

A P-Stable Two-Step Obrechkoff Method for One-Dimensional Schrdinger Equation
下载PDF
导出
摘要 提出一种新的高精度、高效率求解一维Schrdinger方程的Obrechkoff两步方法.通过增加奇数次高阶微商项,大幅度提高了经典Obrechkoff两步递推公式的精度.由求解Morse势束缚态本征值的数值例子表明,在精度和效率上该方法比经典方法求解一维Schrdinger方程有明显的优势. In this paper, a new kind of P-stable two-step Obrechkoff method for the ultra-high-accurate solution of a one-dimensional Schrfdinger equation is proposed. Improving Wang' s method, a new P- stable two-step Obrechkoff method by adding odd derivatives of higher-order has been developed. The proposed method is effective but has high local truncation error. By using the new approach, one can obtain solutions of the well-known one-dimensional Schr^dinger equation. Numerical experiments on the well-known Morse potential demonstrate that our method has the advantage over Wang' s both in accuracy and efficiency.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期53-58,共6页 Journal of Shanghai University:Natural Science Edition
基金 上海市教委科研基金资助项目(A.10-0101-06-426)
关键词 Obrechkoff方法 一维Schrdinger方程 P稳定 Obrechkoff method one-dimensional Schrsdinger equation P-stable
  • 相关文献

参考文献21

  • 1LAMBET J D. Symmetric muhistep methods for periodic initial value problems [ J]. Inst Math Appl, 1976, 18 : 189-202.
  • 2CASH J R, RAPTIS A D. A high order method for the numerical integration of the one-dimensional Schodinger equation [ J]. Comput Phys Commun, 1984, 133:299- 302.
  • 3RAPTIS A D, CASH J R. A variable step method for the numerical integration of the one-dimensional Sehr~dinger equation [J]. Comput Phys Commun, 1985, 136:113- 115.
  • 4WILLIAMS P S, SIMOS T E. Exponentially fitted RungeKutta fourth algebraic order methods for the numerical solution of the Schrodinger equation and related problems [ J]. International Journal of Modern Physics C, 2000, 11:785-807.
  • 5RAPTIS A D. Two-step methods for the numerical solution of the Schrodinger equation [ J ]. Computing, 2000, 128:373-378.
  • 6RAPTIS A D, CASH J R. Exponential and Bessel fitting methods for the numerical solution of the Schriodinger equation [ J ]. Computer Physics Communications, 1987, 144:95-102.
  • 7SIMOS T E. On finite difference methods for the solution of the Schrodinger equation [ J]. J Comput Phys, 1999, 148:305-312.
  • 8AVDELAS G, SIMOS T E. A generator of high-order embedded P-stable methods for the numerical solution of the Schrodinger equation [ J ]. Journal of Computational and Applied Mathematics, 1996, 76:345-358.
  • 9ALLISON A C, RAPTIS A D, SIMOS T E. An eighthorder formula for the numerical integration of the onedimensional Schrodinger equation [ J ]. Journal of Computational Physics, 1991, 197:240-248.
  • 10WANG Z C, DAI Y M. A twelfth-order four-step formula for the numerical integration of the one-dimensional Schrodinger equation [ J]. Int J Mord Phys C, 2003, 14 : 1087-1105.

同被引文献8

  • 1Wang Z, Dai Y. A twelfth - order four - step formula for the numerical integration of the one - dimensional Schr0dinger equation[J]. Int. J. Mord. Phys. C., 2003 (14) : 1087 - 1105.
  • 2Wang Z, Dai Y. An eighth - order two - step formula for the numerical integration of the one - dimensional SehrtMinger equation [J]. N. Math. J. Chin. Univ., 2003 (12): 146-150.
  • 3Wang Z, Ge Y, Dai Y, et al. A mathematica program for the two - step twelfth - order method with multi - deriva- tive for the numerical solution of an one - dimensional SchrOdinger equation [ J ] . Comput. Phys. Commun. , 2004, 160:23-45.
  • 4Rank D H , Eastman D P, Rao B S, et aL Breadths and shifts of molular band lines due to perturbation by foreign gases [J]. Journal of Molecar Spectroscopy, 1963(10)34-50.
  • 5Lamber J D. Symmetric multistep methods for periodic ini- tial value problems[J]. J. Inst. Math. Appl. , 1976(18) : 189 - 202.
  • 6Wang Zhongcheng. A new effective algorithm for the reso- nant state of a Schrdinger equation [ J ]. Computer Physics Communications, 2005 ( 1 ) : 1 - 6.
  • 7Wang Z, Dai Y. An eighth - order two - step formula for the numerical integration of the one - dimensionalSchrfidinger equation[J]. N. Math. J. Chin. Univ., 2003 (12) : 146 - 150.
  • 8Wang Zhongcheng. P -stable linear symmetric multistep methods for periodic initial - value problems [ J ]. Comput. Phys. Commun. , 2005, 171 : 162 - 174.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部