期刊文献+

SLAM算法在AUV中的应用进展 被引量:4

Application of Simultaneous Localization and Mapping to AUV
下载PDF
导出
摘要 同步定位与地图创建(SLAM)是水下航行器在全球范围内实现自主导航的一个基础且重要问题。首先介绍了SLAM算法在水下航行器应用的国内外最新进展,指出了SLAM算法所面临的问题,阐述了研究的环境描述、环境特征提取和不确定信息的描述等难点问题,并对SLAM算法的主要实现方式进行了归纳。最后结合水下航行器的特殊应用环境,探讨了未来SLAM算法的研究趋势和发展方向。 Simultaneous localization and mapping ( SLAM ) is vital to worldwide autonomous navigation of autonomous underwater vehicle(AUV). We introduce the latest progress of SLAM algorithm for AUV both at home and abroad, with emphasis on SLAM algorithm in complicated underwater environment, and indicate the difficult problems in SLAM algorithm such as environment de- scription,environment feature extraction, and uncertain information description. Moreover, we sum up some typical implementing methods of SLAM algorithm, and analyze the trends of SLAM algorithm research and development according to the special application environment of AUV.
出处 《鱼雷技术》 2010年第1期41-48,共8页 Torpedo Technology
基金 新世纪优秀人才支持计划项目资助(NCET-06-0877)
关键词 同步定位与地图创建(SLAM) 自主水下航行器(AUV) 环境特征提取 不确定信息 simultaneous localization and mapping( SLAM ) autonomous underwater vehicle (AUV) environment feature extraction uncertain information
  • 相关文献

参考文献7

二级参考文献90

  • 1[1]Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in robotics[A]. Proceedings of Conference on Uncertainty in Artificial Intelligence[C]. Amsterdam: North-Holland, 1988. 435-461.
  • 2[2]Csorba M. Simultaneous Localization and Map Building[D]. Oxford: University of Oxford, 1997.
  • 3[3]Dissanayake G, Newman P M, et al. A solution to the simultaneous localization and map building (SLAM) problem[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241.
  • 4[4]Leonard J J, Durrant-Whyte F. Simultaneous map building and localization for an autonomous mobile robot[A]. Proceedings of the IEEE International workshop on Intelligent Robots and Systems[C]. Osaka, Japan: 1991. 1442-1447.
  • 5[5]Leonard J J, Feder H J S. A computationally efficient method for large-scale concurrent mapping and localization[A]. Proceedings of the Ninth International Symposium on Robotics Research[C]. London: Springer-Verlag, 1999. 316-321.
  • 6[6]Guivant J, Nebot E, Baiker S. Autonomous navigation and map building using laser range sensors in outdoor applications[J]. Journal of Robotic Systems, 2000, 17 (10): 565-583.
  • 7[7]Wan E, Merwe R. The unscented Kalman-filter for nonlinear estimation[A]. Proceedings of the IEEE Symposium on Adaptive Systems for Signal Processing[C]. Alberta, Canada: 2000. 153-158.
  • 8[8]Castellanos J A, Tardos J D, Schmidt G. Building a global map of the environment of a robot: the importance of correlations[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. 1997.1053-1059.
  • 9[9]Leonard J, Feder H J S. Decoupled stochastic mapping[J]. IEEE Journal of Oceanic Engineer, 2001,26(4): 561-571.
  • 10[10]Williams S B. Efficient Solutions to Autonomous Mapping and Navigation Problems[D]. Sydney: University of Sydney, 2001.

共引文献103

同被引文献30

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部