期刊文献+

肌动蛋白微丝与生长素浓度梯度分布 被引量:1

Actin cytoskeleton and the auxin gradient
原文传递
导出
摘要 生长素参与植物生长发育的各个阶段,如胚胎发生、发育,营养器官发生与形态建成,极性与轴向的建立,维管组织分化,生殖器官的发育等。虽然生长素在植物的各组织器官和细胞中发挥着重要的作用,植物内源生长素的生物合成却是在特异的组织——细胞快速分裂的幼嫩组织中完成的,然后通过韧皮部或受严格控制的细胞—细胞运输系统运送至植物各个部分。生长素的极性运输导致其积累在某些局部组织和细胞内,形成特定梯度分布。生长素对植物生长发育众多方面的调节正是依赖于这一特性。该文综述了近年来有关植物生长发育过程中生长素浓度梯度的形成和相应的生理功能,以及细胞骨架中的微丝参与调控生长素极性运输的研究工作。 Small molecular auxin is one of the most important plant hormones that have been well investigated. Auxin is believed to regulate plant organogenesis, establishment of cell polarity and axis, meristem maintenance, tissue differentiation, as well as tropic growth triggered by light or gravity. It is involved in almost every vital process during plant growth and development. Endogenous auxin is often distributed asymmetrically throughout the plant, accumulated in certain tissues and cells. The formation of these auxin gradients is due to a unique property of auxin: the directional intercellular transport. This review focuses on physiological function and formation of the auxin gradient, as well as the role of actin filaments (MFs) in regulating polar auxin transport.
作者 高小伟 傅缨
出处 《生命科学》 CSCD 北大核心 2010年第1期24-28,共5页 Chinese Bulletin of Life Sciences
基金 国家自然科学基金项目(90817105)
关键词 生长素浓度梯度分布 生长素极性运输 细胞骨架 植物生长发育 auxin gradient polar auxin transport cytoskeleton plant growth and development
  • 相关文献

参考文献1

二级参考文献114

  • 1Lukowitz, W., Gillmor, C.S., and Scheible, W.R. (2000). Positional cloning in Arabidopsis: why it feels good to have a genome initiative working for you. Plant Physiol 123, 795-805.
  • 2Maher, E.P., and Martindale, S.J. (1980). Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem. Genet. 18, 1041-1053.
  • 3Marchant, A., and Bennett, M.J. (1998). The Arabidopsis AUX1 gene: a model system to study mRNA processing in plants. Plant Mol. Biol. 36, 463-471.
  • 4Marchant, A., Kargul, J., May, S.T., Muller, R, Delbarre, A., Perrot- Rechenmann, C., and Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18, 2066-2073.
  • 5Marchant, A., Bhalerao, R., Casimiro, I., Eklof, J., Casero, P.J., Bennett, M., and Sandberg, G. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14, 589-597.
  • 6Michaels, S.D., and Amasino, R.M. (1998). A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14, 381-385.
  • 7Mizra, J.l., Olsen, G.M., Iverson, T.-H., and Maher, E.P. (1984). The growth and gravitropic responses of wild-type and auxin resistant mutants of Arabidopsis thaliana. Physiol. Plant 60, 516-522.
  • 8Motchoulski, A., and Liscum, E. (1999). Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961-964.
  • 9Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497.
  • 10Nagatani, A., Reed, J.W., and Chory, J. (1993). Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrorne A. Plant Physiol 102, 269-277.

共引文献12

同被引文献61

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部