期刊文献+

Mechanical properties of electroformed copper layers with gradient microstructure 被引量:2

Mechanical properties of electroformed copper layers with gradient microstructure
下载PDF
导出
摘要 The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit. The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第1期69-74,共6页 矿物冶金与材料学报(英文版)
关键词 ELECTROFORMING copper layer gradient rnicrostructure mechanical properties preferred orientation electroforming copper layer gradient rnicrostructure mechanical properties preferred orientation
  • 相关文献

参考文献3

二级参考文献25

  • 1张文峰,朱荻,薛玉君,赵飞.Ni-SiC纳米复合电镀工艺的研究[J].电镀与环保,2004,24(4):10-13. 被引量:14
  • 2朱荻,张文峰,雷卫宁.基于电沉积技术的纳米晶材料晶粒细化工艺研究[J].人工晶体学报,2004,33(5):765-769. 被引量:17
  • 3雷卫宁.[D].南京:南京航空航天大学,2002.
  • 4McGeough J A, Leu M C, Rajurkar K P. Industrial electroforming process and application to micro/macro manufacturing. Keynote Paper, Annals of the CIRP, 2001, 50 (2):499~514
  • 5Ebrahimi F, Bourne GR. Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostructured Materials, 1999, 11 (3): 343~350
  • 6Shriram S, Mohan S, Renganathan N G, et al. Electrodeposition of nanocrystalline nickel-a brief review. Transactions of The Institute of Metal Finishing, 2000, 78 (5):194~197
  • 7李荻.电化学原理.北京:北京航空航天大学出版社,1999
  • 8Lei W N, Zhu D, Qu N S. Synthesis of nanocrystalline nickel in pulse deposition. Transactions of The Institute of Metal Finishing, 2002, 80 (6): 205~209
  • 9Robertson A, Erb U, Palumbo G. Practical application for electrodeposited nanocrystalline materials. Nanostructured Materials, 1999, 12(5-8): 1 035~1 040
  • 10El-Sherik A M, Erb U, Palumbo G, et al. Deviations from Hall-Petch behavior in as-prepared nanocrystalline nickel.ScriptaMetalletMater., 1992,27:1 185~1 188

共引文献47

同被引文献15

  • 1赵阳培,葛世荣,张君伟,黄因慧.射流电铸快速成型纳米晶铜的组织与性能[J].机械工程材料,2008,32(1):37-39. 被引量:5
  • 2雷卫宁,朱荻,曲宁松.纳米晶粒精密电铸层力学性能的试验研究[J].机械工程学报,2004,40(12):124-127. 被引量:12
  • 3Hart T, Wstson A. The nickel development institute[ J ]. Electroforming, 1999 (8) : 388 - 399.
  • 4Wong K P, Chan K C, Yue T M. Influence of spike current in different shaped waveforms on the hardness and grain size of nickel electroforms[ J ]. Journal of Materials Processing Technology, 2001 (117) : 97 - 104.
  • 5ZHAO Hai-jun, LIU Lei, WU Ya-ting, et al. Investigation on wear and corrosion behavior of Cu-graphite composites prepared by eledtroforming[ J]. Composites Science and Technology, 2007,67 : 1210 - 1217.
  • 6ZHU Jian-hua, LIU Lei, H U Guo-hua, et al. Study on composite electroforming of Cu/Sip composites[ J]. Materials Letters, 2004 (58) : 1634 - 1637.
  • 7Touyeras F, Hihn J Y, Delalande S, et al. Ultrasound influence on the activation step before electroless coating [ J]. Ultrasonics Sonochemistry, 2003,10 (6) :363 - 368.
  • 8Rao V, Kannan E, Prakash R, et al. Observation of two stage dislocation dynamics from nonlinear ultrasonic response during the plaslic deformation of AA7175-T7351 aluminum alloy[J]. Materials Science and Engineering A, 2009, 512( 1 -2) :92 -99.
  • 9Touyeras F, Hihn J Y, Bourgoin X, et al. Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electro plating[ J ]. Ultrasonics Sonochemistry, 2005, 12 ( 1 - 2) : 13 - 19.
  • 10Rajendran V, Kumaran S M, Jayakumar T, et al. Microstructure and ultrasonic behaviour on thermal heat-treated Al-Li 8090 alloy[ J]. Journal of Alloys Compounds, 2009, 478 ( 1 - 2 ) : 147 - 153.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部