摘要
基于SV、JYK系列滑行艇的阻力、浸湿面积、航行纵倾角试验数据,采用RBF神经网络建立了深V型滑行艇阻力预报数值图谱;针对艇艉底部横向斜升角变化的有限试验数据,提出了一种基于小样本试验数据的阻力修正方法。试验表明,该方法对深V型滑行艇(折角线长度与最大折角线宽度比在4-5.5,面积负荷系数在5.5-7,重心纵向相对位置在3%-9%,艉部艇底斜升角在5°-25°之间变化)阻力预报是可行的。在相同精度下,针对该文研究的问题,RBF神经网络所需时间少于BP神经网络。
The RBF neural network was applied to predicting the resistances of deep-V planning craft based on the measured data of resistance, wetted surface area, and trim of series SV and JYK. According to the limited tested data, a new resistance modified method was presented, which can be used to predict the resistance of planning craft with a range of dead rise angles. The experiment verifies the method of predicting the resistance of deep-V planning crafts, with the ratio of projected chine length to the maximum breadth over the chine 4-5.5, the area coefficient 5.5-7, the longitudinal location of the center of gravity 3% -9%, the stern dead rise angle 5°-25°. In the same precision, the time used by RBF network is less than that used by BP network in solving the problem.
出处
《海军工程大学学报》
CAS
北大核心
2010年第1期39-44,共6页
Journal of Naval University of Engineering
基金
国家自然科学基金资助项目(50879090)
关键词
深V型滑行艇
RBF神经网络
阻力数值图谱
斜升角
阻力修正方法
deep-V planning craft
RBF neural network
resistance numerical multiple atlas
dead rise angle
resistance modified method