期刊文献+

软件系统网络模体及显著性趋势分析 被引量:2

Network motif and triad significance profile research on software system
原文传递
导出
摘要 借鉴网络模体的研究方法,对软件网络的局部特性进行了研究.通过对138个开源JAVA软件系统的实验比较,找出了软件系统中3种典型的网络模体,并发现软件系统因规模和交互的不同,分别与语言网、蛋白质交互网以及信号传输网的局部特性有相似的显著性趋势.阐述了与实验相关的概念、原理和步骤,对实验结果进行了分析和讨论,并给出了进一步的研究方向. There has been considerable recent interest in network motif for understanding network local features, as well as the growth and evolution mechanisms. In order to discover the local features in software networks, we extended the network motif research methods to software domain. After comparing triad significance profiles from 138 java open source software packages, we found three typical kinds of network motifs. Moreover, the software networks could be divided into 3 clusters which are consistent with the known super-families from various other types of networks. It seems that software scale and interaction may be the reasons causing different motif SP distribution. The concepts,the principles and steps associated with the experiment were elaborated, as well as the results were analyzed and discussed, the direction for further research were given.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第2期361-368,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60773155) 国家重点基础研究发展计划(973计划)(2007CB310803)
关键词 软件网络 模体 显著性剖面 超家族 software network network motif triad significance profile super-family
  • 相关文献

参考文献11

  • 1Newman M E. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256.
  • 2Myers C R. Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs[J]. Physical Review E, 2003, 68(4): 46116.
  • 3De M A, Lai Y C, Motter A E. Signatures of small-world and scale-free properties in large computer programs[J]. Physical Review E, 2003, 68(1): 17102.
  • 4Valverde S, Cancho R F, Sole R V. Scale-free networks from optimal design[J]. Europhysics Letters (EPL), 2002, 60(4): 512-517.
  • 5Hyland W D, Carrington D, Kaplan S. Scale-free nature of java software package, class and method collaboration graphs[R]. MIND Laboratory, University of Maryland College Park, 2006.
  • 6Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827.
  • 7Milo R, Itzkovitz S, Kashtan N, et al. Superfamilies of evolved and designed networks[J]. Science, 2004, 303(5663): 1538-1542.
  • 8Kannan R, Tetali P, Vempala S. Simple Markov-chain algorithms for generating bipartite graphs and tournaments[C]. New Orleans, LA, USA: ACM, 1997.
  • 9DependencyFinder[DB/CD]. 1.2.0 ed. http://depfind.sourceforge.net/, 2007.
  • 10Mfinder[DB/CD]. 1.2 ed. http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html, 2008.

同被引文献8

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部