期刊文献+

以研究方法创新促进考试研究的创新和发展

Innovation and Development of Test Study through New Methodology
下载PDF
导出
摘要 探讨研究方法的创新对考试研究的创新和发展的促进作用。对目前考试研究依据的理论和应用方法做出评述后,分别对多层线性分析、潜在类别分析和函数型数据分析这三种新型的数据分析方法的理论与应用作了阐述,同时对这些方法应用于考试研究的可能性及应用做了分析。并指出研究方法的进步是考试研究创新和发展的前提。 Innovation of research method was disscussed to prompt the reviewed the present theories and applied methods for test reasearch, and development of test study. The author introduced the theory and application of three new data analysis methods, hierarchical linear model, latent class model and functional data analysis. A comment was made on applying these new methods in test study, and the development was considered to be the premise of innovation and development in test research.
作者 张敏强
机构地区 华南师范大学
出处 《中国考试》 2010年第2期3-8,共6页 journal of China Examinations
基金 广东省自然科学基金9151063101000002资助
关键词 考试研究 研究方法 多层线性分析 潜在类别分析 函数型数据分析 Test Study Methodology Hierarchical Linear Model Latent Class Model Functional Data Analysis
  • 相关文献

参考文献2

二级参考文献21

  • 1[1]Duncan T E, Duncan S C, Strycker L A. An Introduction to Latent Variable Growth Curve Modeling: Concepts, Issues, and Applications. New Jersey, London: Lawernce Erlbaum Associates, 1999. 12~65
  • 2[2]Raudenbush S W, Chan W. Growth curve analysis in accelerated longitudinal designs. Journal of Research in Crime and Delinquency, 1992, 29: 387~411
  • 3[3]J?reskog K G, S?rbom D. Lisrel 8: Structural Equation Modeling with the SIMPLIS command language. Chicago: Scientific Software International, 1993. 12~145
  • 4[4]Liang K Y, Zeger S L. Longitudinal data analysis using generalized linear models. Biometrika, 1986, 73: 13~22
  • 5[5]Arbuckle J L. AMOS for windows, analysis of moment structures Version 3.5. Chicago IL: Smallwaters, 1995. 25~75
  • 6[6]Bentler P M, Wu E. EQS structural equations program manual. Encino,CA: Multivariate software, 1995. 1~10
  • 7[7]Múthen B, Múthen J.Mplus user's guide: http://www.statmodel.com/Mplus Mplus Version 2.1.
  • 8[8]Bryk A S, Raudenbush S W. Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park,CA: Sage Publication, 1992. 12~52
  • 9[9]Rasbash J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woosdouse G, Draper D. A user's guide to Mlwin. London: Institute of Education, 1999. 1~225
  • 10[10]Longford N T. A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested effects. Biometrika, 1987,74: 817~827

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部