期刊文献+

一种改进的PCNN图像分割算法 被引量:4

An image segmentation algorithm based on an improved PCNN
下载PDF
导出
摘要 PCNN用于图像分割时,为获得满意分割效果,其参数往往通过反复试凑确定,这在一定程度上限制了PCNN的使用。为此在改进的PCNN基础上,提出结合图像灰度直方图,以最大交叉熵函数作自适应遗传算法的适应度函数,采用自适应遗传算法搜索最优门限阈值的图像分割算法。该方法可有效地完成图像分割,分割结果优于原PCNN和传统Ostu算法。 PCNN is very suitable for image segmentation. However, it is necessary to determine the adaptive parameters of the network to achieve satisfactory segmentation results for different images. Up to now, the parameters of PCNN are always adjusted manually, which impedes its application in image segmentation. Aiming at the difficulties and shortcomings with using PCNN in image segmentation, combining the gray histogram of images, using the maximal cross-entropy function as the fitness function of Adaptive Genetic Algorithm, adopting Adaptive Genetic Algorithm to search the optimal threshold, an image segmentation algorithm is put forward based on the improved PCNN. This method can complete efficiently image segmentation, and the segmentation results are superior to the original PCNN and the traditional Ostu Algorithm.
出处 《电路与系统学报》 CSCD 北大核心 2010年第1期77-81,共5页 Journal of Circuits and Systems
关键词 PCNN 自适应遗传算法 最大交叉熵 图像分割 PCNN adaptive genetic algorithm maximal cross-entrop image segmentation
  • 相关文献

参考文献8

二级参考文献44

共引文献187

同被引文献32

  • 1毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 2胡正磊,孙进平,袁运能,毛士艺.基于小波边缘提取和脊线跟踪技术的SAR图像河流检测算法[J].电子与信息学报,2007,29(3):524-527. 被引量:16
  • 3WANG H, PAN L, ZHENG H. Multi-texture-model for water extraction based on remote sensing image [C]//Congress on Image and Signal Processing, China, 2008, 3: 710-714.
  • 4KLEMENJAK S, WASKE B, VALERO S, CHANUSSOT J. Automatic detection of rivers in high- resolution SAR data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(5): 1364-1372.
  • 5SUN J P, MAO S Y. River detection algorithm in SAR images based on edge extraction and ridge tracing techniques [J]. International Journal of Remote Sensing, 2011, 32(12): 3485-3494.
  • 6Guo K H, LABATE D. Optimally sparse multidimensional representation using Shearlets [J]. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298-318.
  • 7EASLEY G R, LABATE D. Sparse directional image representations using the discrete Shearlet transform [J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.
  • 8KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm [J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337.
  • 9顾胜兰.自然场景下的文本定位与提取[D].上海:上海交通大学,2009.
  • 10PASSINO K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems,2002,22(3):52-67.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部