摘要
小波神经网络结合了小波变换和神经网络的优点,具有很强的非线性映射能力和自适应、自学习能力,特别适合于入侵检测系统.但小波神经网络的也有易于陷入局部极小值、收敛速度慢的弱点.对此,本文引入遗传算法来优化产生小波神经网络的初始权值与阈值等,确定一个较好的搜索空间,从而克服小波神经网络易于陷入局部极小值的缺点;同时引入了阻尼牛顿算法,在遗传算法所确定了的搜索空间中对网络进行快速训练,解决传统小波神经网络收敛速度慢的问题,两者构成阻尼牛顿-遗传-小波神经网络.仿真结果表明该方法可行,使神经网络的逼近能力和泛化能力得到了显著提高.
The wavelet neural network (WNN) combines both advantages of the wavelet transform and the neural network, hence being of strong nonlinear mapping, adaptive and self-learning capabilities, and fairly suitable to the intrusion detection. However, it has some weakness in computing, such as easy convergence to local minimums and a slow convergence rate. To improve WNN's performance first the genetic algorithm (GA) is introduced to optimize WNN's initial weights and thresholds etc. for getting a better solution space to avoid local minimums; then the Levenberg-Marquardt (LM) algorithm is used to speed up the convergence rate, thus leading to an algorithm-hybrid neural network, namely the GALM- WNN. The simulation results show that such a hybrid treatment makes WNN's approximation and ization capability be significantly enhanced. general
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
北大核心
2010年第1期24-28,共5页
Journal of Jinan University(Natural Science & Medicine Edition)
基金
国家自然科学基金项目(60275028)
关键词
入侵检测
小波神经网络
遗传算法
网络安全
阻尼牛顿算法
intrusion detection
network security
wavelet neural networks
genetic algorithm
Levenberg-Marquardt algorithm