期刊文献+

结合遗传算法和阻尼牛顿算法的小波神经网络入侵检测 被引量:1

Intrusion detection using wavelet neural networks with GA and LM
下载PDF
导出
摘要 小波神经网络结合了小波变换和神经网络的优点,具有很强的非线性映射能力和自适应、自学习能力,特别适合于入侵检测系统.但小波神经网络的也有易于陷入局部极小值、收敛速度慢的弱点.对此,本文引入遗传算法来优化产生小波神经网络的初始权值与阈值等,确定一个较好的搜索空间,从而克服小波神经网络易于陷入局部极小值的缺点;同时引入了阻尼牛顿算法,在遗传算法所确定了的搜索空间中对网络进行快速训练,解决传统小波神经网络收敛速度慢的问题,两者构成阻尼牛顿-遗传-小波神经网络.仿真结果表明该方法可行,使神经网络的逼近能力和泛化能力得到了显著提高. The wavelet neural network (WNN) combines both advantages of the wavelet transform and the neural network, hence being of strong nonlinear mapping, adaptive and self-learning capabilities, and fairly suitable to the intrusion detection. However, it has some weakness in computing, such as easy convergence to local minimums and a slow convergence rate. To improve WNN's performance first the genetic algorithm (GA) is introduced to optimize WNN's initial weights and thresholds etc. for getting a better solution space to avoid local minimums; then the Levenberg-Marquardt (LM) algorithm is used to speed up the convergence rate, thus leading to an algorithm-hybrid neural network, namely the GALM- WNN. The simulation results show that such a hybrid treatment makes WNN's approximation and ization capability be significantly enhanced. general
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2010年第1期24-28,共5页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家自然科学基金项目(60275028)
关键词 入侵检测 小波神经网络 遗传算法 网络安全 阻尼牛顿算法 intrusion detection network security wavelet neural networks genetic algorithm Levenberg-Marquardt algorithm
  • 相关文献

参考文献9

  • 1GREITZER F L, FERRYMAN T A. Predicting remaining life of mechanical systems [ J ]. Intelligent Ship Symposium, 2001, (4) : 2-3.
  • 2BROTHERTON T, GRABILL P A. Testbed for data fusion for helicopter diagnostics and prognostics: Proceedings of the 2003 IEEE aerospace conference[ C]. Big Sky MT IEEE, 2003.
  • 3朱党峰.基于小波神经网络的入侵检测技术研究[D].兰州大学计算机系,2006.
  • 4LI S T, CHEN S C. Function approximation using robust wavelet neural networks. Proc of the 14th IEEE international conference on tools with artificial intelligent [ C ]. Taiwan(China) : IEEE Press, 2002 : 483 -488.
  • 5ZHANG Q H, BENVENISTE A. Wavelet network [ J ]. IEEE Trans on Neural Network. 1992, 3(6) : 889-898.
  • 6赵弘,周瑞祥,林廷圻.基于Levenberg-Marquardt算法的神经网络监督控制[J].西安交通大学学报,2002,36(5):523-527. 被引量:118
  • 7HOLLAND J H. Adaptation in Nature and Artificial Systems[ M]. London:MIT Press, 1975.
  • 8曹军,苏建民,孙丽平,胡昆仑.遗传算法与模拟退火算法在神经网络优化中的性能分析[J].东北林业大学学报,2002,30(6):26-28. 被引量:8
  • 9KDD CUP99 data set [ EB/OL]. http://kdd. ies. uei. edu/databases/kddcup99/kddcup99. html, 1999.

二级参考文献9

共引文献124

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部