期刊文献+

可列齐次马氏链熵率的指数收敛速度

THE EXPONENTIAL CONVERGENCE RATE OF THE SHANNON ENTROPY RATE OF COUNTABLE HOMOGENEOUS MARKOV CHAINS
原文传递
导出
摘要 运用Markov不等式和期望、强遍历、δ系数的性质,利用Chang提出的研究指数收敛速度的方法,在给出5个引理的基础上,研究了初始状态给定的一类可列齐次马氏链熵率的收敛速度,推广了Chang的结果. In this paper, the convergence rate of the Shannon entropy rate of certain countable homogeneous Markov chain is investigated by using Markov inequality and some properties of expectation, strong ergodicity and delta coefficient, in which the technique in Chang is applied. The obtained results generalize the corresponding results given by Chang.
出处 《系统科学与数学》 CSCD 北大核心 2010年第2期199-204,共6页 Journal of Systems Science and Mathematical Sciences
基金 国家重点基础研究发展计划(973项目2007CB814903) 国家自然科学基金(10571076 70671069)资助课题
关键词 可列齐次马氏链 熵率 收敛速度 强遍历 大偏差 Countable homogeneous Markov chains, Shannon entropy rate, convergence rate, strong ergodicity, large deviation.
  • 相关文献

参考文献9

  • 1Shannon C. A mathematical theory of communication. J. Bell. Syst. Tech., 1948, 27: 379-423, 623-656.
  • 2McMillan B. The basic theorem of information theory. Ann. Math. Statist., 1953, 24: 196-219.
  • 3Breiman L. The individual ergodic theorem of information theory. Ann. Math. Statist., 1957, 28: 309-811.
  • 4Breiman L. A correction to " The Individual Ergodic Theorem of Information Theory". Ann. Statist., 1960, 31: 809-810.
  • 5Chung K L. A note on the ergodic theorem of information theory. Ann. Math. Statist., 1961, 32: 612-614.
  • 6Cover T M, Thomas J A. Elements of Information Theory. Wiley: New York, 1991.
  • 7Chang H S. On ordinal comparison of policies in Markov reward processes. J. Optim. Theory Appl., 2004, 122(1): 207-217.
  • 8Chang H S. On convergence rate of the Shannon entropy rate of ergodic Markov chains via samplepath simulation. Statistics and Probability Letters, 2006, 76: 1261-1264.
  • 9Isaacson D, Madsen R. Markov Chains Theory and Applications. New York: Wiley, 1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部