期刊文献+

乳酸菌的抗冷冻性及耐受机理 被引量:9

Anti-freezing Property and Mechanism of Lactic Acid Bacteria
原文传递
导出
摘要 乳酸菌发酵剂在工业生产过程中,会受到冷冻的刺激,如真空冷冻干燥及后期的低温保藏,此外,发酵乳制品的保藏和干酪的成熟过程也都在低温中进行。这些均会对乳酸菌发酵剂及发酵乳制品质量产生一定的影响。因此,掌握乳酸菌在冷冻条件下的反应机理有助于优化发酵剂和发酵乳制品在工业生产中的冷冻、发酵和贮藏条件,从而提高产品质量和生产效益。本文对乳酸菌的抗冷冻性及机理进行了分析,并对发酵剂的保护提出具体措施。 During industrial production of starters, Lactic Acid Bacteria are subjected to cold shock by preservative techniques like freezing, frozen storage, and vacuum freeze-drying. Moreover, starters subjected to these pressures need to function effectively during application at low temperature used in the perservation of fermented foods and curing of cheese. All of these factors can influence the quality of starter culture and its fermented foods to some extent. The survival and physiological conditions of the starter bacteria preserved by such techniques (freezing, frozen storage, and lyphilization) will determine their functionality in such applications. Therefore, a better understanding of the responses and mechanisms of Lactic Acid Bacteria under low temperatures and freezing may contribute to the protection of freezing, fermentation and storage for starter culture and fermented foods when they are suffered in low temperature processes. In this study, the protective mechanisms needed for starter bacteria to survive in above mentioned preservative techniques with good functionality were analyzed. Based on these analyses, we have proposed protection methods that would improve the functionality of starter bacteria preserved by freezing, frozen storage and/or lyophilization.
出处 《微生物学通报》 CAS CSCD 北大核心 2010年第2期274-279,共6页 Microbiology China
基金 国家863计划项目(No.2006AA10Z345 2007AA10Z353) 现代农业产业技术体系项目
关键词 乳酸菌 抗冷冻机理 抗冷冻能力 Lactic Acid Bacteria, Anti-freezing mechanism, Cryotolerance
  • 相关文献

参考文献36

  • 1Storz G, Hengge-Aronis R. Bacterial Stress Responses. Washington: ASM Press, 2000: 33-45.
  • 2Beal C, Fonseca F, Corrieu G. Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. Journal of Dairy Science, 2001, 84(11): 2347-2356.
  • 3Murga MLF, Cabrera GM, de Valdez GF, et al. Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus aeidophilus. Journal of Applied Microbiology, 2000, 88(2): 342-348.
  • 4Russell N J, Evans RI, ter Steeg PF, et al. Membranes as a target for stress adaptation. International Journal of Food Microbiology, 1995, 28(2): 255-261.
  • 5Smittle RB, Gilliland SE, Speck ML, et al. Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen. Applied Microbiology, 1974, 27(4): 738-743.
  • 6Zavaglia AG, Disalvo AE, de Antoni LG. Fatty acid composition and freeze-thaw resistance in Lactobacilli. Journal of Dairy Research, 2000, 67(2): 241-247.
  • 7Woulters JA, Frenkiel H, de VOS Willem M, et al. Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of cold-induced proteins. Applied and Environmental Microbiology, 2001, 67(11): 5171-5178.
  • 8Graumann PL, Marahiel MA. A superfamily of proteins that contain the cold-shock domain. Trends in Biochemical Sciences, 1998, 23(8): 286-290.
  • 9Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. The Journal of Biological Chemistry, 1997, 272(1): 196-202.
  • 10Wouters JA, Mailhes M, Rombouts FM, et al. Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG 1363. Applied and Environmental Microbiology, 2000, 66(9): 3756-3763.

二级参考文献33

  • 1邵京山,薛敏,冯玉兰,曹黎波,于峻.复方丹参注射液对脑出血CT及脑脊液LDH的影响[J].实用中西医结合临床,2002,2(5):1-2. 被引量:1
  • 2Kilpi E E R, Kahala M M, Steeleb J L, et al.. Angiotensin Ⅰ-converting enzyme inhibitory activity in milk fermented by wild-type andpeptidase-deletion derivatives of Lactobacillus helveticus CNRZ32[J]. Inter. Dairy J., 2007, 17:976-984.
  • 3Deutsch S M, Neveu A, Gueaenec S, et al.. Early lysis of LactobaciUus helveticus CNRZ 303 in Swiss cheese is not prophage-related[J]. Inter. J. Food Microbiol. 2003, 81:147 - 157.
  • 4Fox P F, Law J, McSweeney P L H, et al.. Cheese: Chemistry, physics and microbiology[J]. J. Biochem. Cheese Ripening, 1993, 1:389-438.
  • 5Nakamura Y, Yamamoto N, Sakai K, et al.. Purification and characterization of angiotensin ACE-converting enzyme inhibitors from sour milk [J]. J. Dairy Sci. ,1995, 78:777 -783.
  • 6Nakamura Y, Yamamoto N, Sakai K, et al.. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin Ⅰ-converting enzyme [ J ]. J. Dairy Sci. , 1995, 78 : 1253 - 1257.
  • 7Masuda O, Nakamura Y, Takano T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats [ J ]. J. Nutri., 1996,126(12) : 3063 - 3068.
  • 8Kennya B O, Fitz Geraldb R J, O'Cuinnc G, et al.. Autolysis of selected Lactobacillus helveticus adjunct strains during cheddar cheese ripening [ J ]. Inter. Dairy J. , 2006, 16 : 797 - 804.
  • 9Hannona J A, Wilkinsonb M G, Delahuntyc C M, et al.. Use of autolytic starter systems to accelerate the ripening of Cheddar cheese [J]. Inter. Dairy J., 2003, 13:313-323.
  • 10Baky A A, El-Neshawy A, Rabie A, et al.. Heat-shocked Lactobacilli for accelerating flavor development of Ras cheese [J]. Food Chem., 1986, 21:301 -313.

共引文献71

同被引文献129

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部