期刊文献+

甘氨脱氧胆酸钠胶束对Ca^2+离子的“缓冲”作用及其机理

Study on the Mechanism of Ca^(2+)-Buffering by Sodium Glycodeoxycholate Micelles
下载PDF
导出
摘要 采用浊度滴定、激光光散射谱、透射电子显微镜和傅里叶变换红外光谱等方法研究了甘氨脱氧胆酸钠(NaGDC)胶束对Ca2+的"缓冲"作用及其机理。结果表明,NaGDC浓度在CMC以上时,将延缓甘氨脱氧胆酸钙盐的沉淀,浓度越高"缓冲"能力越大。可能的作用机理是当NaGDC浓度小于CMC时,Ca2+直接与GDC-离子作用,形成甘氨脱氧胆酸钙沉淀;当NaGDC浓度大于CMC时,首先,Ca2+与NaGDC胶束亲水面上的羧基作用,使NaGDC小胶束通过Ca2+桥连接形成纤维状的大胶束。而后,随着Ca2+浓度的增加,纤维状胶束中与Ca2+作用的COO-逐渐增多,当胶束中Ca2+/Na+比增大到一定值时,最终形成NanCam(GDC)n+2m沉淀,从而延缓了甘氨脱氧胆酸钙盐的生成。为研究胆汁中表面活性与金属离子的复杂相互作用给出了新思路。 In the present article, NaGDC was used to study the Ca^2+ -buffering capability of bile salt micelles. NaGDC is a natu rally occurring bile salt which constitutes approximately 10 molar percent of bile salt composition in gallbladder. The authors selected glycine conjugated bile salts NaGDC because it precipitates with Ca^2+ ions fast. The Ca^2+-buffering property of sodium glycodeoxycholate (NaGDC) micelles was studied by utilizing turbidity titration, quasi-elastic light scattering (QELS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). When the concentration of NaGDC was above the CIVIC, the precipitation of Ca^2+ ions with NaGDC was buffered. The Ca^2+ -buffering capability was enhanced when the concentration of NaGDC increased. The possible mechanism of Ca^2+ -buffering by NaGDC micelles was discussed. When the concentration of NaGDC was below the CIVIC, the Ca^2+ ions reacted with GDC-anions to form the Ca(GDC)2 precipitation. However, at the concentration above the CMC, NaGDC simple micelles were connected by Ca2+-bridge to form larger fibriform micelles via the interaction of carboxyl groups of NaGDC simple micelles with Ca^2+ ions. When the ratio of Ca^2+ to Na^+ was enhanced to the fixed value, NanCam(GDC)n+2m complexes were precipitated by the further addition of Ca^2+ ions.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第3期748-752,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(20171004,50673005)资助
关键词 甘氨脱氧胆酸钠 胶束 CA2+ Sodium glycodeoxycholate Micelle Ca^2+
  • 相关文献

参考文献15

  • 1Small D M,Bougles M,Dernichiam D G.Nature,1966,211:816.
  • 2Kawamura H,Murata Y,Yamagushi T,et al.J.Phys.Chem.,1989,93:3321.
  • 3LIN Ji-wen(林吉文).Foundation of Steroid Chemistry(甾体化学基础).Beijing:Chemical Industry Press(北京:化学工业出版社),1989.
  • 4Williamson B W A,Percy-Robb I W.Biochem.J.,1979,181:61.
  • 5Williamson B W A,Percy-Robb I W.Gastroenterology,1980,78:696.
  • 6Rajagopalan N.I.indenbaum S.Biochim.Biophys.Acta,1982,711:66.
  • 7Moore E,Celic L,Oatrow J D.Gastroenterology,1982,83:1079.
  • 8Kahn M J,Lakshminarayanajah N,Trotman B W,et al.Hepatology,1982,2:732.
  • 9Gu J J,Hofmann A F,Ton-Nu H T,et al.J.Lipid Res.,1992,33:635.
  • 10Jones C,Hofmann A F,Mysels K J,et al.J.Colloid Interf.Sci.,1986,114:452.

二级参考文献13

  • 1邓穗平,陈德志,欧阳健明.泌尿系结石组分分析方法及其研究进展[J].光谱学与光谱分析,2006,26(4):761-767. 被引量:23
  • 2鲁路,刘新星,曾钫,童真.用动态光散射跟踪钙-海藻酸水溶液凝胶化[J].高分子学报,2007,17(3):297-300. 被引量:4
  • 3Sheng X X, Jung T S, Wesson J A, et al. Procedings of the National Academy of Science, 2005, 102(2): 267.
  • 4Laube N, Mohr B. Hesse A. J. Crystal Growth, 2001, 233: 367.
  • 5Ruhlmann C, Thieme M, ttelmstedt M. Chem. Phys. Lipids, 2001, 110: 173.
  • 6Ouyang J-M, Wan M H, Zhou Na. International Journal of Nanoscience, 2006, 5(6): 769.
  • 7Deng F, Ouyang J M. Mater. Sci. Eng. C, 2006, 26(4) : 688.
  • 8Bergstrom L, Bostedt E. Colloids and Surfaces. 1990, A49: 183.
  • 9Cesarano J, Aksay I A. J. Am. Ceram, Soc, , 1988, 71(12): 1062.
  • 10Ouyang J M, Yao X Q, Su Z X, et al. Science in China(Series B), 2003, 33(1) : 14.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部