期刊文献+

基于路标观测角的星际着陆器自主位姿确定技术 被引量:8

Autonomous Position and Attitude Determination for Interplanetary Landers Based on Landmark Observation Angles
原文传递
导出
摘要 针对利用导航路标进行六自由度状态估计这一非线性、模糊性问题,对星际着陆器自主位姿确定技术进行了研究。为了减小算法的复杂性,提高求解精度,基于欧式变换下角度不变性,提出以导航路标观测视线之间所形成的夹角作为观测量,对像素观测方程中位置、姿态状态进行解耦求解。通过对观测矩阵的讨论,分析了导航路标空间分布对位姿确定精度的影响,给出了导航路标选取的最优观测方案。最后利用蒙特卡罗仿真对所提导航算法进行了验证,并对影响导航精度的各相关因素进行了分析。 To deal with the non-linear and non-unique question of six freedom states estimation using the pixels of navigation landmarks,the autonomous position and attitude determination for interplanetary landers is discussed. Based on the invariability of angles in orthogonal transformation,the position and attitude are decoupled for determination by importing the observation angles between of measured lines of sight so as to reduce algorithmic complexity and improve solution precision. For the optimal observation questions,an observation matrix is utilized to analyze the effect of landmark geometry configuration on determination precision,and a novel landmark selecting scheme is proposed to improve the precision of state estimation. Finally,the autonomous optical navigation algorithm is validated and the factors influencing navigation precision is analyzed using Monte Carlo simulations.
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第2期318-326,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60874094)
关键词 自主位姿确定 星际着陆器 导航路标 观测角 最优观测 几何最优 autonomous position and attitude determination interplanetary lander navigation landmark observation angle optimal observation geometry optimization
  • 相关文献

参考文献11

  • 1Seidensticker K J, Mohlmann D, Apathy I, et al. SESAME-an experiment of the Rosetta Lander Philae: objectives and general design [ J ]. Space Science Reviews 2007, 128(1): 301- 337.
  • 2Li S, Cui P Y, Cui H T. Autonomous navigation and guidance for landing on asteroids[J]. Aerospace Science and Technology, 2006, 10(3): 239-247.
  • 3Hashimoto T, Kubota T, Sawai S. Image-based guidance, navigation, and control for MUSES -C sample and return spacecraft[J]. Advances in the Astronautical Sciences, 2002, 111: 181 -192.
  • 4Johnson A E, Cheng Y, Matthies L H. Machine vision for autonomous small body navigation[C]//Proceedings of IEEE Aerospace Conference. 2000, 7:661- 671.
  • 5Cheng Y, Johnson A E, Matthies L. MER- DIMES: a planetary landing application of computer vision[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1 : 806- 813.
  • 6Misu T, Hashimoto T, Ninomiya K. Optical guidance for autonomous landing of spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 459- 472.
  • 7Cheng Y, Mi!!er J K. Autonomous landmark based spacecraft navigation system[J]. Advances in the Astronautical Sciences, 2003, 114(Sup): 1769- 1783.
  • 8Miller J K, Cheng Y. Autonomous landmark tracking orbit determination strategy[C]//Proceedings of 2003 AAS/ AIAA Astrodynamics Specialist Conference. 2003, 3: 1779-1790.
  • 9Sharp C S, Shakernia O, Sastry S S. A vision system for landing an unmanned aerial vehicle [C]//Proceedings of IEEE International Conference on Robotics and Automation. 2001, 2: 1720-1727.
  • 10Saripalli S, Montgomery J F, Sukhatme G S. Visionbased autonomous landing of an unmanned aerial vehicle [C] // Proceedings of IEEE International Conference on Robotics and Automation. 2002, 3: 2799-2804.

同被引文献105

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部