期刊文献+

小波插值方法自适应数值求解时间进化微分方程 被引量:6

Numerical solution for differential evolutional equation using adaptive interpolation wavelet method
下载PDF
导出
摘要 应用小波自相关函数的插值性质,得到任意给定函数的插值小波表达式,然后对其直接求导,可以得到函数导数的表达式。导数运算不再应用差分算法,扩展了小波方法在数值求解微分方程中的应用。由于小波基函数的有限支撑特点,小波方法可以有效地处理微分方程中解的局部突变问题。通过设定小波系数阀值,实现了求解过程的自适应。本文给出了两个算例,结果表明了算法的自适应特点及其向二维空间问题推广的有效性。 A wavelet interpolating expression for a given function is obtained using interpolating property of autocorrelation of wavelet function, and then we take differentiation to this expression to calculate the function's derivative. Thus, differentiation calculation is not operated by difference, but by wavelet ba- ses, therefore, it intensifies wavelet method's application in numerical solution of differential equation. With the aid of compactly wavelet bases, wavelet method can solve differential equation with local sharp transition solution effectively. The adaptation of solution process is realized by setting a threshold value for wavelet coefficients. Two examples including a two dimensional Burgers equation, were given in this paper to demonstrate effectiveness of this algorithm and its extension in two dimensional space.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2010年第1期65-69,共5页 Chinese Journal of Computational Mechanics
基金 创新研究群体基金(50921001) 973项目(2010CB832700)资助项目
关键词 小波分析 偏微分方程 自适应 激波 BURGERS方程 wavelet analysis partial differential equation numerical solution shock wave Burgers equation
  • 相关文献

参考文献8

  • 1梅树立,张森文,雷廷武.Burgers方程的小波精细积分算法[J].计算力学学报,2003,20(1):49-52. 被引量:15
  • 2VASILYEV O V, PAOLUCCI S, SEN M. A multi- level wavelet collocation method for solving partial differential equations in a finite, domain[J]. J Comput, Phys,1995,120:33-47.
  • 3QIAN S, WIESS J. Wavelets and the numerical solution of partial differential equations [J]. J Comput Phys, 1993,106 : 155-175.
  • 4LATTO A, RRSNILOFF H L, TENENBAUM E. Aware Technical Report AD910708[A]. Proceedings of the French-USA workshop on wavelets and turbulence[C]. Princeton University Springer-Verlag,Berlin, New York, 1992.
  • 5傅晓玲.插值小波自适应求解双曲型偏微分方程[J].北方工业大学学报,2000,12(3):31-35. 被引量:6
  • 6VASILYEV O V, PAOLUCCI S. A fast adaptive wavelet collocation algorithm for multidimensional pdes[J]. J Cornput Phys, 1997,138 : 16-56.
  • 7BEYLKIN G. On the representation of operators in bases of compactly supported wavelets[J].SIAM J NUMER ANAL ,1992,6(6) :1716-1740.
  • 8郭会芬,邱翔,刘宇陆.小波变换在湍流数值研究中的应用[J].计算力学学报,2006,23(1):58-64. 被引量:7

二级参考文献40

  • 1舒玮,姜楠.湍流中涡的尺度分析[J].空气动力学学报,2000,18(z1):89-95. 被引量:28
  • 2FARGE M, RABREAU G. Wavelet transform to detect and analysis coherent strutures in two-dimensional turbulent flows [J]. C R Acad Sci,1988,307(Ⅱ): 1479-1486.
  • 3FARGE M, KEVLAHAN N K R, PERRIER V,Schneider K. Wavelet in Physics, Cambridge University Press[M]. Cambridge, 1999.
  • 4HARTEN A. Adaptive multiresolution schemes for shock computations[J]. J Comput Phys, 1994, 15(2):319-338.
  • 5VASILYEV O V, PAOLUCCI S, SEN M. A multilevel wavelet collocation method for solving partial differential equations in a finite domain [J]. J Comput Phys, 1995,120: 33-47.
  • 6CHARTON P H, PERRIER V. Towards a Wavelet Based Numerical Scheme for the 2-Dimensional Navier-Stokes Equations[A]. Proceedings of ICIAM 95, ZAMM[C].
  • 7FRO HLICH J, SCHNEIDER K. An adaptive wavelet-vaguelette algorithm for the solution of PDEs[J]. J Comput Phys, 1997,130:174-190.
  • 8FARGE M, SCHNEIDER K, KEVLAHAN N K.Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthonormal wavelet basis[J]. Phys Fluids, 1999,11:2187-2201.
  • 9SCHNEIDER K, FARGE M. Coherent Vortex Simulation (CVS) of two-dimensional turbulence[J]. Z angew Math Mech, 2000,3(81):485-486.
  • 10FARGE M, SCHNEIDER K. Coherent Vortex Simulation, a semi-deterministic turbulence model using wavelets [J]. Flow Turb Combust, 2001,66:393-426.

共引文献25

同被引文献29

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部