摘要
传统的基于局部二元模式(LBP)的人脸识别方法采用卡方统计度量LBP直方图间的差异,由于卡方统计度量的复杂性以及是在高维空间进行判别,此方法在大型人脸库上的识别速度低,为此提出一种LBP直方图映射(LBPHP)方法.将LBP直方图映射到保局投影(LPP)空间获取低维LBPHP特征,当判别新样本时只须比较新样本与训练样本的LBPHP特征,识别过程简单且在低维空间进行,识别速度很快.鉴于LPP强大的鉴别特性,此方法的识别率很高.在2个知名人脸库上对LBPHP方法进行实验验证,结果表明,相比于传统识别方法,LBPHP的识别速度快,尤其在大型人脸库上优势更加明显,适于在此类人脸库上的实际应用如身份认证等.
The conventional local binary pattern (LBP) based facial recognition method selects Chi square statistic as the dissimilarity measure for LBP histogram.In view of Chi square statistic's complexity and the high-dimensional recognition process,the conventional method is very slow as recognizing on large-scale face database.A method of LBP histogram projection (LBPHP) was proposed,which projects LBP histogram onto locality preserving projection (LPP) space and obtains low-dimensional LBPHP feature.Recognizing new sample only needs to compare its LBPHP feature with those of training samples.The process is simple and carried on low-dimensional space,thus the proposed method is fast and has good accuracy in the light of powerful discriminative property of LPP.Comparative experiments on two large-scale face databases demonstrated that the LBPHP method is superior to the conventional method on recognition speed.The LBPHP method is prominent especially on large-scale face database and suitable for practical application,e.g.identity authentication.
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2010年第1期136-140,共5页
Journal of Zhejiang University:Engineering Science
基金
国家"863"高技术研究发展计划重点资助项目(2006AA040202)
浙江省"新世纪151人才工程"资助项目
关键词
局部二元模式
直方图映射
人脸识别
大型人脸库
local binary pattern
histogram projection
face recognition
large-scale face database