期刊文献+

一类拟线性椭圆型方程组无穷多个解

Infinitely solutions for a class of quasilinear elliptic systems
下载PDF
导出
摘要 利用临界点理论中的对称形式山路引理,证明了一类拟线性椭圆型方程组分别在次线性和超线性情形下无穷多个解的存在性. By using symmetric mountain pass theorem in critical points theory, the Dirichlet problem of a class of quasilinear elliptic systems was investigated, and the existence of infinite solutions in the sublinear and superlinear cases was proved respectively.
作者 周毅 章国庆
出处 《上海理工大学学报》 CAS 北大核心 2010年第1期13-16,共4页 Journal of University of Shanghai For Science and Technology
基金 上海市教育委员会科研创新基金资助项目(08YZ93) 上海市重点学科建设资助项目(S30501)
关键词 无穷多个解 对称形式山路引理 拟线性椭圆型方程组 infinitely solutions symmetric mountain pass theorem quasilinear elliptic system
  • 相关文献

参考文献7

  • 1RABINOWITZ P H. On a class of nonlinear Schrodinger equations[J]. ZAMP, 1992,43 : 270 - 291.
  • 2COSTA D G,MAGALHAES C A. A variational approach m noncooperative elliptic systems[J]. Nonlinear Anal, 1995,25 : 699 - 715.
  • 3BOCCARDO L,de FIGUEIREDO D G. Some remarks on a system of quasilinear elliptic equations[J]. NoDEA, 2002,9: 309 - 323.
  • 4I COFFMAN C V. A minimum-maximum principle for I class of nonlinear integral equations [J]. J. AnalI I Math. ,1969,22:391 - 419.
  • 5WILLEM M. Minmax theorems[M]. Boston: Birkhauser, 1996.
  • 6章国庆,刘三阳.一类拟线性椭圆方程组非平凡解的存在性[J].高校应用数学学报(A辑),2004,19(3):297-302. 被引量:3
  • 7BREZIS H,NIRENBERG L. Remarks on finding critical points[J]. Commun. Pure. Appl. Math., 1991, 44:939 - 963.

二级参考文献5

  • 1Ambrosetti A,Rabinowitz P H.Dual variational methods in critical points theory and applications[J].Journal of Functional Analysis,1973,14:349-381.
  • 2Costa G,Magalhaes C A.Existence results for perturbations of the P- Laplacian[J].Nonlinear Analysis TMA,1995,25:409-418.
  • 3Bartolo P,Benci V,Fortunato D.Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity[J].Nonlinear Analysis TMA,1983,7:981-1012.
  • 4Boccardo L,Figueiredo D G De.Some remarks on a system of quasilinear elliptic equations[J].Nonlinear Differential Equations and Applications,2002,9:309-323.
  • 5Rudin W.Real and Complex Analysis[M].Second Edition,New York:McGraw- Hill,1974.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部