期刊文献+

体导电信道分析与研究 被引量:1

Analysis and Research of Volume Conduction Channel
下载PDF
导出
摘要 为了降低植入器件的功耗和有效控制植入器件,提高通信效率,提出了一种基于体导电的低功耗数字通信模型。当体导电流的工作频率在kHz级,生物背景信号干扰是微不足道的,体导电信道可近似为加性高斯白噪声信道。从香农信息论出发,推导出二维调制下的信道容量公式,从而得到推论:在极低信噪比时采用两电平调制就能相当有效地利用信道容量,在高信噪比时,为了充分利用信道容量必须采用多电平调制。利用SystemView对信道进行仿真,证明体导电数字通信的可行性,并得出采取调制方式的必要性,以及误码率和信噪比的关系。 In order to reduce the power consumption of devices implanted and control the devices effectively, a low power digital communication mode/based volume conduction is presented in this paper. As the frequency increases approaching tens of kHz, the effect of background biological noise is considered negligible, the channel is thus modeled as the additive white Gaussian noise (AWGN) channel in these frequencies. From Shannon information theory, two - dimensional modulation of channel capacity formula is derived, based on this, with extremely low SNR (signal to noise ratio) using in the two -level modulation, it can be very effective use of channel capacity. With high SNR a multi - level modulation is used in order to make full use of the channel capacity. SystemView is used to the channel simulation, which confirms the feasibility of digital communication, and comes to take the need for modulation, and the curves of the BER(bit error rate) and SNR.
出处 《计算机仿真》 CSCD 北大核心 2010年第2期149-152,195,共5页 Computer Simulation
关键词 体导电 植入器件 信道容量 信噪比 误码率 Volume conduction Implantable device Channel capacity SNR BER
  • 相关文献

参考文献1

二级参考文献51

  • 1[23]Schwan M A K,Troyk P R.High efficiency driver for transcutaneously coupled coils [A].Engineering in Medicine and Biology Society,Images of the Twenty-First Century,Proceedings of the Annual International Conference of the IEEE Engineering [C].USA:IEEE,1989.1403-1404.
  • 2[24]Scanlon W G,Burns B,Evans N E.Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz [J].Biomedical Engineering,IEEE Transactions on,2000,47(4):527-534.
  • 3[25]Arnold R,Manck O.An implantable low power mixed signal telemetry chip for measurements of the frequency dependent impedance of transplanted kidneys for rejection control [A].Low Power/Low Voltage Mixed-Signal Circuits and Systems,2001.(DCAS-01).Proceedings of the IEEE 2nd Dallas CAS Workshop [C].USA:IEEE,2001.3-6.
  • 4[26]Yamu Hu,Sawan M.CMOS front-end amplifier dedicated to monitor very low amplitude signal from implantable sensors [A].Circuits and Systems,2000.Proceedings of the 43rd IEEE Midwest Symposium [C].Lansing MI:IEEE,2000,1.298-301.
  • 5[27]Papathanasiou K,Ehmann T L.An implantable CMOS signal conditioning system for recording nerve signals with cuff electrodes [A].Circuits and Systems,Proceedings.ISCAS 2000 Geneva.The 2000 IEEE International Symposium [C].Geneva,Switzerland:IEEE,2000.281-284.
  • 6[28]Nielsen J H,Lehmann T.An implantable CMOS amplifier for nerve signals [A].Electronics,Circuits and Systems,2001.ICECS 2001.The 8th IEEE International Conference [C].USA:IEEE,2001.1183-1186.
  • 7[29]Enz C C,Temes G C.Circuit techniques for reducing the effects of op-amp imperfections:autozeroing,correlated double sampling,and chopper stabilization [J].Proceedings of the IEEE,1996,84(11):1584-1614.
  • 8[30]Kyung Hwan Kim,Sung June Kim.Noise performance design of CMOS preamplifier for the active semiconductor neural probe [J].Biomedical Engineering,IEEE Transactions on,2000,47(8):1097-1105.
  • 9[31]Harb A,Sawan M.Low-power CMOS implantable nerve signal analog processing circuit [A].Electronics,Circuits and Systems,2000.ICECS 2000.The 7th IEEE International Conference [C].Canada:IEEE,2000.911-914.
  • 10[32]Laizou P C.Signal-processing techniques for cochlear implants [J].IEEE Engineering in Medicine and Biology Magazine,1999,18(3):34-46.

共引文献16

同被引文献21

  • 1JOHN E F, DAVID R. Wireless communication with im- planted medical devices using the conductive properties of the body [ J ]. Expert Rev. Med. Devices, 2011,8 (4) : 423-429.
  • 2VELLISTE M, PEREL S, SPALDING M C, et al. Cortical control of a prosthetic arm for self-feeding [ J ]. Nature, 2008,453 (7198) : 1098-1101.
  • 3MORITZ C T,PERLMUTFER S I,FETZ E E. Direct con- trol of paralysed muscles by cortical neurons [ J ]. Nature, 2008,456(7222) : 639-642.
  • 4BENABID A L, CHABARDS S, M1TROFANIS J, et al. Deep brain stimulation of the subthalamic nucleus for thetreatment of Parkinson's disease [ J ]. Lancet Neurol, 2009,8 ( 1 ) : 67-81.
  • 5HAUSER R G, KATS1YIANNIS W T, GORN1CK C C, et al. Deaths and cardiovascular injuries due to device-assis- ted implantable cardioverter-defibrillator and pacemaker lead extraction [ J ]. Europace, 2010,12 ( 3 ) : 395-401.
  • 6LOEB G E, RICHMOND F JR, BAKER L L,et al. The BION devices: injectable interfaces with peripheral nerves and muscles [ J ] Neurosurg. Focus, 2006,20 ( 5 ) : 1-Q.
  • 7ORLOV M V,SZOMBATHY T,CHAUDHRY G M,et al. Remote surveillance of implantable cardiac devices [ J ]. PACE ,2009,32( 7 ) : 928-939.
  • 8DORIN P. Wireless communication systems for implant- able medical devices [ J ]. IEEE Engineering in Medicine and Biology Magazine,2008,27(2) : 96-101.
  • 9ZIMMERMAN T G. Personal Area Networks: Near-field intrabody communication [ J ]. IBM Systems Journals, 1996,35 : 609-617.
  • 10SUN M G,JUSTIN G,ROCHE P. Passing data and suppl- ying power to neural implants [ J ]. IEEE Engineering in Medicine and Biology Magazine,2006,25 (5) : 39-46.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部