期刊文献+

离散分数余弦变换自适应滤波算法及应用

An Adaptive Filtering Algorithm of Discrete Fractional Cosine Transform and Its Application
下载PDF
导出
摘要 为改善时域最小均方算法的收敛速度,提出离散分数余弦变换自适应滤波算法。利用离散余弦变换的去相关能力,构造一个新型自适应算法所需的目标函数,采用递归方式使变换域信号功率归一化,选取最优的变换阶次,获得最小均方误差,明显改善了算法的收敛速度。仿真实验结果显示:与传统的LMS、DCT-LMS相比,离散分数余弦LMS算法的特征值比有比较明显的下降;DFRCT-LMS比前两种算法更快地收敛。在语音增强应用实验中,离散分数余弦LMS算法优势明显,具有实际应用价值。 The adaptive filtering algorithm of discrete fractional cosine transfrom is proposed in order to increase the convergence speed of LMS algorithm. Because of superlatively decor - relating effect of discrete fractional cosine transform, the proposed algorithm with the optimal fractional order, forms objective function within transform output power is normalized by recursive form. The minimization of mean square error implies that the algorithm can remark- ably increase the convergence speed. The simulation results indicate that, compared with those of LMS and DCT - LMS, the EVR of DFRCT - LMS is remarkably reduced; the DFRCT - LMS method can speed convergence effectively. DFRCT - LMS also behaves well in the application of speech enhancement,and has wide application value .
出处 《计算机仿真》 CSCD 北大核心 2010年第2期360-363,共4页 Computer Simulation
基金 湖南省自然科学基金(08JJ5031)
关键词 离散分数余弦变换 自适应滤波 语音增强 Discrete fractional cosine transform Adaptive filtering Speech enhancement
  • 相关文献

参考文献10

  • 1西蒙赫金.自适应滤波器原理(第四版)[M].北京:电子工业出版社,2006.
  • 2F Beaufays. Transform - domain adaptive filters : an analytical approach [ J ]. IEEE Trans Signal Processing, 1995,43 ( 2 ) : 422 -431.
  • 3R C Bilcu, P Kuosmanen, K Egiazarian. A transform domain LMS adaptive filter with variable step -Size[J].IEEE Signal Processing Letters, 2002,9(2) :51 -53.
  • 4QI Lin, ZHANG Yang- yong, TAO Ran, WANG Yue. Adaptive filtering in fractionanal fourier domain [ J ]. tEEE international symposium on mircrowave, anternna, propagation and EMC technology for wireless communications proceedings, 2005. 1033 - 1036.
  • 5苏钢,朱光喜,刘应状.一种新的变换域自适应LMS滤波算法[J].微电子学与计算机,2007,24(8):65-68. 被引量:5
  • 6F Beaufays. Two - layer linear structures for fast adaptive [ D ]. Stanford Calif: Stanford University, 1995.
  • 7Soo - Chang Pei, Min - Hung Yeh. The discrete Fractional Cosine and Sine Transforms[ J]. IEEE Transactions on Signal Processing, 1995,49(6) :1198 - 1207.
  • 8S Narayan, A Peterson. Transform domain LMS algorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1983,31(3) :609 -615.
  • 9陶然,张峰,王越.分数阶Fourier变换离散化的研究进展[J].中国科学(E辑),2008,38(4):481-503. 被引量:27
  • 10Soo - Chang Pei, Min - Hung Yeh. The Discrete Fractional Cosine and Sine Transform [ J ]. IEEE Transactions on Signal Processing, 2001,49 (6) : 1198 - 1207.

二级参考文献9

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部