期刊文献+

在单向FP-tree上挖掘最大频繁项集 被引量:1

Mining Maximal Frequent Itemsets in a Unidirectional FP-tree
下载PDF
导出
摘要 针对稠密数据集,提出一种基于单向FP-tree的最大频繁项集挖掘算法Unid_FP-Max2。该算法在挖掘过程中只生成被约束子树,而它是一种虚拟的树结构,在原有的单向FP-tree基础上用三个很小的数组来表示,因而避免了以往算法需递归构造条件FP-tree来计算最大频繁项集的弊端,极大的降低了内存空间和时间开销,提高了挖掘效率。实验表明,与FP-Max算法相比,算法的效率提高了1倍以上。 Proposes an efficient algorithm Unid_FP-Max2 for mining the complete set of maximal frequent itemsets in a unidirectional FP-tree. Because the algorithm only generates constrained sub-trees which is pseudo tree structure consisting of three small arrays based on the originally unidirectional FP-tree, avoides the flaw in former algorithms which need to generate lots of conditional FP-trees for finding maximal frequent itemsets recursively. Reduces the space and time consumption to a great extent,then the algorithm improves mining efficiency. Experiment shows that in comparison with FP-Max, this algorithm accelerates the mining speed by at least one times.
出处 《现代计算机》 2010年第1期19-24,共6页 Modern Computer
基金 河南省高校杰出科研人才创新工程项目(No2007KYCX018)
关键词 数据挖掘 频繁项集 最大频繁项集 单向FP—tree 被约束子树 Data Mining Frequent Itemset Maximal Frequent Itemset Unidirectional FP-tree Constrained Sub-Tree
  • 相关文献

参考文献18

  • 1R Agrawal,R Srikant. Fast Algorithms for Mining Association Rules. In: Proc. of 1994 Int'l Conf. on Very Large Data Bases. Santiago, Chili : VLDB Endowment[C]. 1994:487-499.
  • 2J S Park,M S Chen,P S Yu. An Effective Hash-Based Algorithm for Mining Association Rules. In: Proc. of 1995 ACMSIGMOD Int'l Conf. on Management of Data. San Jose ,CA : ACM Press [C]. 1995:175-186.
  • 3R Agrawal , R Srikant. Mining Sequential Patterns. In : ICDE' 951 Taipei,Taiwan: IEEE Computer Society Press [C]. 1995: 3-14.
  • 4S. Brin,R. Motwani, C. Silverstein. Beyond Market Basket Generalizing Association Rules to Correlations. In SIGMOD[C] 1997:265-276.
  • 5Bayardo R. Efficiently Mining Long Patterns from Databases. In: Haas LM,ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press[C].1998:85-93.
  • 6Lin D,Kedem ZM. Pincer-Search: A New Algorithm for Discovering the Maximum Frequent Set. In: Proc. of the 6th European Conf. on Extending Database Technology[C]. Heidelberg: Springer-Verlag, 1998:105-119.
  • 7路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 8宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 9Burdick D, Calimlim M, Gehrke J. Mafia: A Maximal Frequent hemset Algorithm for Transactional Databases. in: Proc. of the 17th Int'l Conf. on Data Engineering[C], 2001:443-452.
  • 10Gouda K,Zaki MJ. Efficiently Mining Maximal Frequent hemsets. In: Proc. of the 1st IEEE Int'l Conf. on Data Mining, 2001:163-170.

二级参考文献16

  • 1颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 2R Agrawal, R Srikant. Fast algorithms for mining association rules. In: Proc of 1994 Int'l Conf on Very Large Data Bases.Santiago, Chili: VLDB Endowment, 1994. 487--499.
  • 3J S Park, M S Chen, P S Yu. An effective Hash-based algorithm for mining association rules. In: Proc of 1995 ACM-SIGMOD Int'l Cord on Management of Data. San Jose, CA: ACM Press,1995. 175--186.
  • 4S Brin, R Motwani, C Silvemtein. Beyond market basket:Generalizing association rules to correlations. In: Proe of 1997 ACM-SIGMOD Int'l Conf on Management of Data. Tucson, AZ:ACM Press, 1997. 265--276.
  • 5R Agrawal, R Srikant. Mining sequential patterns. In: ICDE'95. Taipei, Taiwan: IEEE Computer Society Press, 1995. 3--14.
  • 6G Dong, J Li. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. San Diego, CA:ACM Press, 1999. 43~52.
  • 7J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation. In: Proe of 2000 ACM-SIGMOD Int'l Conf on Management of Data. Dallas, TX: ACM Press, 2000. 1--12.
  • 8Artur Bykowski, Christophe Rigotti. A eondemsed representation to find frequent patterns. In: Proe of the 20th ACM SIGACT-SIGMOD-SIGART Symp on Principles of Database Systems(PODS 2001). Santa Barbara, CA: ACM Press, 2001. 267~273.
  • 9Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 10Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页

共引文献263

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部