期刊文献+

合成孔径雷达反演裸露地表土壤水分的新方法 被引量:25

A New Method for Soil Moisture Inversion by Synthetic Aperture Radar
原文传递
导出
摘要 提出了一种新的合成孔径雷达(SAR)反演裸露地表土壤水分的经验模型,该模型同时考虑了均方根高度S和相关长度L的影响,并将两个粗糙度参数合二为一,然后利用VV和VH极化的后向散射系数即可反演得到土壤水分。通过实测数据对模型进行了验证,发现在θ0>20°时,模型反演值与模拟值有着良好的相关关系(R2=0.71)。该模型在不需要测量地面粗糙度的情况下可以反演得到比较好的土壤水分精度,尤其适用于地表情况复杂、难以精确测量的地区。 We develop an originally experiential methodology to retrieve bare soil moisture by synthetic aperture radar(SAR). The model does not require any field measurements to sup- port, and only requires the two different kinds of polarized backscattering coefficient data. Taking into account both of the roughness parameters RMS S and the correlative length L, we combine the two roughness parameters and introduce a new roughness parameter (Rs= S3/L2) into this model. Hence, the unknown parameter in the model reduces to Rs and the volume of soil water content mv. Then, the ground soil moisture can be retrieved by integra- ting the equations of VV and VH polarization. The simulating data was used to validate the accuracy of this model. The result shows that there is a strong linear relationship (R2〉 0.71) when the incidence angle is not very small (θ0-20°). The inversion model can get a better accuracy of soil moisture without any measurements of surface roughness. This meth- od is especially effective in the area with complex terrain where the surface roughness is diffi- cult to be precisely measured.
作者 余凡 赵英时
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第3期317-321,共5页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2007CB714407) 中国科学院西部行动计划(二期)资助项目(KZCX2-XB2-09)
关键词 SAR 土壤水分 反演 粗糙度 SAR soil moisture inversion roughness
  • 相关文献

参考文献9

  • 1Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing[M]. London: Addison-Wesley Press, 1992.
  • 2Zribi M, Deehambre M. A New Empirical Model to Retrieve Soil Moisture and Roughness from Radar Data[J]. Remote Sensing of Environment, 2002, 84(1) : 42-52.
  • 3吴锦奎,丁永建,沈永平,牛丽,王根绪.黑河中游地区湿草地蒸散量试验研究[J].冰川冻土,2005,27(4):582-590. 被引量:17
  • 4Wu T D, Chen K S. A Reappraisal of the Validity of the IEM Model for Backscattering from Rough Surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4) : 743-753.
  • 5Dubois P C, van Zyl J, Engman T. Measuring Soil Moisture with Imaging Radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33 (4), 915-926.
  • 6Ulaby F T, Moore R K, Fung A K. Microwave Remote Sensing Active and Passive[M]. Norwood, M A: Arteeh House Press, 1981.
  • 7Shi J C, Wang J, Neill P, et al. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-band SAR Image Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1 254-1 266.
  • 8Wang J, Hsu A, Shi J C, et al. Estimating Surface Soil Moisture from SIR-C Measurements over the Little Washita River Watershed[J]. Remote Sensing of Environment, 1997, 59(3): 308-320.
  • 9王晓红,刘耀林,杜晓.基于MODIS图像的植被叶面水反演与农业干旱监测[J].武汉大学学报(信息科学版),2007,32(6):498-501. 被引量:8

二级参考文献25

  • 1宋炳煜.草原区不同植物群落蒸发蒸腾的研究[J].植物生态学报,1995,19(4):319-328. 被引量:57
  • 2Allen R G, Pereira L S, Raes D, et al. FAO Irrigation and Drainage Paper No. 56, Crop Evapotranspiration (Guidelines for Computing Crop Water Eequirements) [M]. Rome: FAO,1998.
  • 3Mc Aneney K J, hier B. Operational limits to the Priestley-Taylor formula [J]. Irrig. Sci. , 1996, 17: 37-43.
  • 4Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature [J]. Applied Engrg. In Agric. , 1985,1(2) : 96-99.
  • 5Jacobs J M, Satti S R. Evaluation of Reference Evapotranspiration Methodologies and AFSIRS Crop Water Use Simulation Model [M]. Florida, University of Florida, 2001.
  • 6Jensen M E, Burman R D, Allen R G. Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practices No. 70 [M]. New York: ASCE,1990.
  • 7Rana G, Katerji N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review [J]. European Journal of Agronomy, 2000, 13: 125-153.
  • 8Nagakawa S. Study on Evapotranspiration from Pasture [R].Annual Report of Environmental Research Center, The University of Tsukuba, Japan, 1984. 32-33.
  • 9Chuvieco E,Rian D,Aguado I,et al.Estimation of Fuel Moisture Content from Multitemporal Analysis of Landsat Thematic Mapper Reflectance Data:Applications in Fire Danger Assessment[J].International Journal of Remote Sensing,2001,23(11):2 145-2 162
  • 10Danson F M,Steven M D,Malthus T J,et al.High-Spectral Resolution Data for Determining Leaf Water Content[J].International Journal of Remote Sensing,1992,13(3):461-470

共引文献23

同被引文献249

引证文献25

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部