期刊文献+

高精度曲面模型的解算 被引量:2

An Algorithm for Solving High Accuracy Surface Modeling
原文传递
导出
摘要 为了提高Gass-Seidel(GS)算法的收敛速度,提出了改进的GS算法(MGS),用于解算高精度曲面模型(HASM)(HASM-MGS)。以高斯合成曲面为研究对象,将HASM-MGS与HASM-GS和Matlab提供的函数进行对比,结果表明,达到相同的模拟中误差,HASM-MGS计算时间远小于HASM-GS和Matlab提供的函数;HASM-MGS计算时间与模拟区域的网格数呈非常好的线性关系,时间复杂度比传统的方法降低两个数量级。 High accuracy surface modelling (HASM) constructed based on the fundamental theorem of surfaces is more accurate than the classical methods. But HASM must solve a big sparse linear systems. Gauss-Seidel (GS) can be considered as the first method for solving the linear systems. In order to decrease the computation costs and improve the accuracy of HASM, we employed a modified Gauss-Seidel (HASM MGS) to solve the linear systems of HASM. Gauss synthetic surface was selected as the research object. We proved that HASM MGS is more accurate than HASM-GS and the classical methods used in Matlab. The com- putation time of HASM MGS is approximately proportional to the one power of the total number of grid cells, which can be considered as a big improvement in solving HASM systems.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第3期365-368,共4页 Geomatics and Information Science of Wuhan University
基金 国家863计划资助项目(2006AA12Z219) 中国科学院知识创新工程重要方向资助项目(kzcx2-yw-429) 国家杰出青年科学基金资助项目(40825003) 国家科技支撑计划资助项目(2006BAC08B04)
关键词 精度 插值 模拟 误差 accuracy interpolation simulation error
  • 引文网络
  • 相关文献

参考文献6

  • 1岳天祥,杜正平,刘纪远.高精度曲面建模与误差分析[J].自然科学进展,2004,14(3):300-306. 被引量:48
  • 2岳天祥,杜正平,宋敦江,龚云.HASM应用中的精度损失问题和解决方案[J].自然科学进展,2007,17(5):624-631. 被引量:4
  • 3Davis T J. Direct Methods for Sparse Linear Systems[M]. Philadelphia: SIAM, 2006.
  • 4Saad Y, van der Vorst H A. Iterative Solution of Linear Systems in the 20th Century[J]. Journal of Computational and Applied Mathematics, 2000, 123 (1/2): 1-33.
  • 5Ujevic N. A New Iterative Method for Solving Linear Systems[J]. Applied Mathematics and Computation, 2006, 179 (2): 725-730.
  • 6Bramble J H, Pasciak J E. The Analysis of Smoothers for Multigrid Algorithms[J]. Mathematics of Computation, 1992, 58: 467-488.

二级参考文献14

共引文献47

同被引文献36

  • 1岳天祥,杜正平.高精度曲面建模与经典模型的误差比较分析[J].自然科学进展,2006,16(8):986-991. 被引量:30
  • 2岳天祥,杜正平.高精度曲面建模最佳表达形式的数值实验分析[J].地球信息科学,2006,8(3):83-87. 被引量:17
  • 3Yue T X. Surface modeling:High accuracy and high speed methods[M].CRC Press,Inc,2010.39-63.
  • 4Davis T J. Direct methods for Sparse Linear Systems[J].Philadelphia:SIAM,2006,(85-94).
  • 5Hestenes M R,Stiefel E F. Methods of conjugate gradients for solving linear systems[J].Journal of Research of the National Bureau of Standards,1952.409-436.
  • 6Golub G H,Van Loan C F. Matrix computations[J].Posts & Telecompress,2009.530-535.
  • 7Meijerink J A,Vorst van der H A. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix[J].Mathematics of Computation,1977,(31):148-162.
  • 8Evans D J,Forrington C V D. An iterative process for optimizing symmetric successive over-relaxation[J].Computer Journal,1963,(03):271-273.doi:10.1093/comjnl/6.3.271.
  • 9Helfenstein R,Koko J. Parallel preconditioned conjugate gradient algorithm on GPU[J].Journal of Computational and Applied Mathematics,2012,(15):3584-3590.doi:10.1016/j.cam.2011.04.025.
  • 10Li Jin, Heap A D. A Review of Comparative Stud ies of Spatial Interpolation Methods in Environmen- tal Sciences: Performance and Impact Factors[J]. Ecological lnformatics, 2011, 6:228-241.

引证文献2

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部