摘要
利用重合度理论中的延拓定理和Lyapunov泛函方法,获得了一类具有无穷时滞的中立型泛函微分方程(x(t))+cx(t-σ))′=A(t,x(t))x(t)+integral from n=-∞ to 0 f(t,s,x(t+s)ds+sum from i=1 to p fi(t,x(t-τi(t))))周期解的存在性和全局吸引性的一些容易验证的充分条件,推广和改进了已有文献的相关结果。
By using the coincidence degree theory and constructing suitable Lyapunov functional, some easily verifiable sufficient con- ditions are derived on the existence and global attractivity of periodic solution for a class of neutral type of functional differential equations The results have extended and improved the related reports in the literatures.
出处
《柳州师专学报》
2010年第1期120-128,共9页
Journal of Liuzhou Teachers College
关键词
无穷时滞
中立型泛函微分方程
周期解
存在性
全局吸引性
重合度
infinite delays
neutral type functional differential equation
periodic solutions
existence
global attractivity
coinci- dence degree