期刊文献+

非线性不等式组的Jacobian光滑牛顿法 被引量:1

Jacobian Smoothing Newton Method for Nonlinear Inequalities
下载PDF
导出
摘要 将非线性不等式组的求解问题转化为非线性方程组的求解,利用辅助函数的一致光滑逼近性以及Jacobian相容性,采用光滑牛顿法逐次逼近目标方程组从而求得问题的解。在一些假设条件下,算法的全局收敛性得到了保证。 Reformulates nonlinear inequalities as nonlinear equations for solving problems. Uses the uniformly smoothing approaching of auxiliary function and Jacobian consistency, as well as a successive approximation smoothing Newton method to solve the non-smoothing equations. And under some assumption, algorithm global convergence is guaranteed.
出处 《湖南工业大学学报》 2010年第1期32-35,共4页 Journal of Hunan University of Technology
基金 湖南省教育厅基金资助项目(08C668)
关键词 非线性不等式组 光滑牛顿法 逐次近似 Jacobian相容 全局收敛 nonlinear inequalities smoothing Newton method successive approximation Jacobian consistency global convergence
  • 相关文献

参考文献6

  • 1何郁波,马昌凤.非线性不等式组的信赖域算法[J].工程数学学报,2008,25(2):224-230. 被引量:5
  • 2Chen X. On the Convergence of Broyden-Like Methods for Nonlinear Equations with Nondifferentiable Terms[J]. Ann Inst Staffs Math, 1990, 42(2): 387-401.
  • 3Chen X, Qi L. Parameterized Newton Method and BroydenLike Method for Solving Nonsmooth Equations[J]. Computational Optimization and Applications, 1994, 46 (3): 157-179.
  • 4Ma C. Convergence Analysis of a Successive Approximation Quasi-Newton Method for Solving Nonlinear Complementarity Problems[J]. Journal Mathematical Research and Exposition, 2006, 16(3): 333-346.
  • 5Clarke F H. Optimization and Nonsmooth Analysis'[M]. New York: John Wiley, 1983.
  • 6Chen X, Qi L, Sun D. Global and Superlinear Convergence of the Smoothing Newton Method and Its Application to General Box Constrained Variational Inequalities[J]. Math Comp, 1998, 67(222): 519-525.

二级参考文献10

  • 1袁亚湘.信赖域方法的收敛性[J].计算数学,1994,16(3):333-346. 被引量:60
  • 2Chen X. On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms[J]. Ann Inst Statist Math, 1990, 42:387-401.
  • 3Chen X, Qi L. Parameterized newton method and Broyden-like method for solving nonsmooth equations[J]. Computational Optimization and Applications, 1994, 3:157-179.
  • 4Chen X, Yamamoto T. On the convergence of some quasi-newton methods for nonlinear equations with nondifferentiable operators[J]. Computing, 1992, 58:87-94.
  • 5Ma C. Convergence analysis of a successive approximation quasi-Newton method for solving nonlinear complementarity problems[J]. Journal Mathematical Research and Exposition, 2006, 26(1): 179-188.
  • 6Yuan Y. Conditions for convergence of trust region algorithms for nonsmooth optimization[J]. Math Programming, 1985, 31:220-228.
  • 7Dennis J E, Lis B, Tapia K A. A unified approach to globle convergence of trust region methods for nonsmooth optimization[J]. Math Programming, 1995, 68:319-346.
  • 8Powell M J D. Convergence properties of a class of minimization algorithms[C].Nonlinear Programming 2, O.L.Mangasarian, R.R.Meyer and S.M.Robinson, eds., Academic Press, New York, 1975.
  • 9Fletcher R. Practical Methods of Optimization, Vol.2, Constrained Optimization[M]. New York: John Wiley and Sons, 1981.
  • 10刘国山.无约束非光滑优化问题的信赖域算法及收敛性[J].计算数学,1998,20(2):113-120. 被引量:8

共引文献4

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部