摘要
将非线性不等式组的求解问题转化为非线性方程组的求解,利用辅助函数的一致光滑逼近性以及Jacobian相容性,采用光滑牛顿法逐次逼近目标方程组从而求得问题的解。在一些假设条件下,算法的全局收敛性得到了保证。
Reformulates nonlinear inequalities as nonlinear equations for solving problems. Uses the uniformly smoothing approaching of auxiliary function and Jacobian consistency, as well as a successive approximation smoothing Newton method to solve the non-smoothing equations. And under some assumption, algorithm global convergence is guaranteed.
出处
《湖南工业大学学报》
2010年第1期32-35,共4页
Journal of Hunan University of Technology
基金
湖南省教育厅基金资助项目(08C668)
关键词
非线性不等式组
光滑牛顿法
逐次近似
Jacobian相容
全局收敛
nonlinear inequalities
smoothing Newton method
successive approximation
Jacobian consistency
global convergence