Criteria of Existence of Hall Subgroups in Non-soluble Finite Groups
Criteria of Existence of Hall Subgroups in Non-soluble Finite Groups
摘要
In this paper, the famous Hall theorem and the famous Schur-Zassenhaus theorem are generalized.
In this paper, the famous Hall theorem and the famous Schur-Zassenhaus theorem are generalized.
基金
Supported by National Natural Science Foundation of China (Grant No. 10771180)
参考文献13
-
1Hall, P.: A note on soluble groups. J. London Math. Soc., 3, 98-105 (1928).
-
2Hall, P.: On the system normalizers of a soluble group. Proc. London Math. Soc., 43(2), 507-528 (1937).
-
3Huppert, B.: Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
-
4GUO, W. B., Shum, K. P., Skiba, A. N.: Conditionally permutable subgroups and supersolubility of finite groups. Southeast Asian Bull. Math., 29, 493-510 (2005).
-
5GUO, W. B., Shum, K. P., Skiba, A. N.: Criterions of supersolubility for products of supersoluble groups. Publ. Math. Debrecen, 68(3-4), 433-449 (2006).
-
6GUO, W. B., Shum, K. P., Skiba, A. N.: X-quasinormal subgroups. Siberian Math. J., 48(4), 593-605 (2007).
-
7GUO, W. B., Shum, K. P., Skiba, A. N.: X-semipermutable subgroups of finite groups. J. Algebra, 315, 31-41 (2007).
-
8Robinson, D. J. S.: A Course in the Theory of Groups, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
-
9Kegel, O. H.: Produkte nilpotenter Gruppen. Arch. Math., 12, 90-93 (1961).
-
10Zhang, Y. D.: The Structure of Finite Groups, Science Press, Beijing, 1982.
-
1Yufeng Liu,Wenbin Guo,N. Skiba.On Existence of Hall Subgroups in Finite Groups[J].Algebra Colloquium,2017,24(1):75-82.
-
2陈晓龙.π-Hall子群在控制传输理论中的应用[J].南京建筑工程学院学报,1995(3):69-74.
-
3乔友明,Jayalal Sarma M.N,唐邦晟.On Isomorphism Testing of Groups with Normal Hall Subgroups[J].Journal of Computer Science & Technology,2012,27(4):687-701.
-
4NAN JI-ZHU WANG CHENG-CHENG LI HAI-LING.On Some Varieties of Soluble Lie Algebras[J].Communications in Mathematical Research,2012,28(1):10-16.
-
5姜久亮.n-幂零Hall子群的Wielandt定理[J].山西大学学报(自然科学版),1994,17(4):380-382.
-
6王燕鸣.关于Zassenhaus猜想[J].科学通报,1991,36(6):474-474.
-
7李世荣,史江涛,何宣丽.交换群和循环群的若干充分必要条件[J].广西科学,2006,13(1):1-3. 被引量:4
-
8王守俭,刘志都.关于Chowlas和Zassenhaus的一个猜想[J].南都学坛(南阳师专学报),1996,16(6):47-49.
-
9郭文斌.Finite Groups With Given Normalizers of Sylow Subgroups[J].Chinese Science Bulletin,1994,39(23):1952-1955. 被引量:1
-
10Zhangjia HAN,Guiyun CHEN,Huaguo SHI.On minimal non-J N J-groups[J].Frontiers of Mathematics in China,2013,8(6):1295-1306. 被引量:1