期刊文献+

Differential Calculus on Compact Quantum Group U_θ(2) and its Applications 被引量:2

Differential Calculus on Compact Quantum Group U_θ(2) and its Applications
原文传递
导出
摘要 In this paper, via constructing special matrices, we will show that there exists a differential calculus on Uθ(2), where θ is an irrational number. Then using the above results, we shall discuss the properties of infinitesimal generators of corepresentations of Uθ(2). And in the final, we shall discuss its irreducible corepresentations and give the Peter-Weyl theorem explicitly for compact quantum group Uθ(2). In this paper, via constructing special matrices, we will show that there exists a differential calculus on Uθ(2), where θ is an irrational number. Then using the above results, we shall discuss the properties of infinitesimal generators of corepresentations of Uθ(2). And in the final, we shall discuss its irreducible corepresentations and give the Peter-Weyl theorem explicitly for compact quantum group Uθ(2).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第3期533-554,共22页 数学学报(英文版)
关键词 compact quantum group differential calculus Lie algebra irreducible corepresentation compact quantum group, differential calculus, Lie algebra, irreducible corepresentation
  • 相关文献

参考文献13

  • 1Connes, A.: Noncommutative geometry, New York, Academic Press, 1994.
  • 2Connes, A.: Noncommutative differential geometry. I. H. E. S. Publn. Math., 62, 257-360 (1985).
  • 3Drinfel, V. G.: Quantum groups, in Proc. I. C. M. (1, 2), Berkeley, California, 1986.
  • 4Jimbo, M.: A q-analoge of U(gl(N +1)), Hecke algebra and Yang Baxter equation. Lett. Math. Phys., 11, 247-252 (1986).
  • 5Woronowicz, S. L.: Twisted SU(2) group. An example of a non-commutative differential calculus. Publ. RIMS, Kyoto Univ., 23, 117-181 (1987).
  • 6Chakraborty, P. S., Pal, A.: Equibariant spectral triples on the quantum SU(2) group. K-Theory, 28, 107-126 (2003).
  • 7Connes, A.: cyclic cohomology, quantum group symmetries and the local index formula for SUq (2). J. Inst. Math. Jussieu, 3(1), 17-68 (2004).
  • 8Zhang, X. X., Zhao, Y. M.: The quantum group Uq(2) (Ⅰ). Linear Algebra Appl., 408, 244-258 (2005).
  • 9Connes, A., Violette, M. D.: Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples. Commun. Math. Phys., 230, 539-579 (2002).
  • 10Zhang, X. X.: The compact quantum groups Uq(2) (Ⅱ). Acta Mathematica Sinica, English Series, 22(4), 1221-1226 (2006).

同被引文献29

  • 1ZHANG XiaoXia Department of Mathematics,Yantai University,Yantai 264005,China.On the classification of compact quantum groups U_θ(2)[J].Science China Mathematics,2010,53(5):256-269. 被引量:4
  • 2Xiao Xia ZHANG.The Compact Quantum Group Uq(2) (Ⅱ)[J].Acta Mathematica Sinica,English Series,2006,22(4):1221-1226. 被引量:1
  • 3Partha Sarathi Chakraborty,Arupkumar Pal.Equivariant Spectral Triples on the Quantum SU(2) Group[J]. K - Theory . 2003 (2)
  • 4Alain Connes,Michel Dubois-Violette.Noncommutative Finite-Dimensional Manifolds. I. Spherical Manifolds and Related Examples[J]. Communications in Mathematical Physics . 2002 (3)
  • 5Dan Voiculescu.The Topological Version of Free Entropy[J]. Letters in Mathematical Physics . 2002 (1)
  • 6Shuzhou Wang.Free products of compact quantum groups[J]. Communications in Mathematical Physics . 1995 (3)
  • 7Marc Rosso.Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra[J]. Communications in Mathematical Physics . 1988 (4)
  • 8S. L. Woronowicz.Compact matrix pseudogroups[J]. Communications in Mathematical Physics . 1987 (4)
  • 9Lusztig,G.Quantum deformations of certain simple modules over enveloping algebras. Advances in Mathematics . 1988
  • 10Br cker T,Dieck T tom.Representations of Compact Lie Groups. New York Berlin: Springer-Verlag . 1985

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部